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Vorwort



Vor diesem Hintergrund nimmt das Projekt ML4FW eine entschei-
dende Rolle ein: Es greift die drängende Notwendigkeit auf, die 
vorhandenen Potenziale der Digitalisierung gezielt und praktisch 
nutzbar zu machen, und demonstriert eindrucksvoll, wie die 
Wärmewende mit intelligenten Technologien konkret beschleu-
nigt werden kann. ML4FW demonstriert in der Praxis, wie digitale 
Technologien, insbesondere Machine Learning (ML), zu einer  
signifikanten Effizienzsteigerung in Bestandsquartieren bei­
tragen können.

Neben der Umsetzung des Use Case wurde im Rahmen des Pro-
jekts erstmals ein methodisch fundiertes Bewertungsverfahren 
für den Einsatz von Künstlicher Intelligenz in der Fernwärme ent-
wickelt. Diese Methodik ermöglicht es Stakeholdern der Energie- 
und Wohnungswirtschaft, Digitalisierungsvorhaben frühzeitig 
hinsichtlich ihres Nutzens, ihres Aufwands und ihrer Risiken  
einzuschätzen. Beide Ergebnisse sind signifikante Beiträge zur 
digitalen Transformation der Wärmeversorgung und stehen als 
Open-Source-Anwendung frei zur Verfügung, wodurch insbeson-
dere kleinere Stadtwerke und deren Dienstleister in die Lage ver-
setzt werden, die Chancen der Digitalisierung greifbar zu nutzen.

Mit diesem Bericht möchten wir Entscheiderinnen und Entschei-
der aus Politik, Wohnungswirtschaft, Energieversorgung, Wissen-
schaft und Digitalbranche über die Erkenntnisse und Ergebnisse 
von ML4FW informieren und gleichzeitig dazu ermutigen, die 
Chancen digitaler Technologien aktiv zu nutzen. Unser herzlicher 
Dank gilt allen Projektpartnern, insbesondere dem Fraunhofer 
IEE und IBP, der Neuwoba und SAMSON, für ihre engagierte und 
innovative Zusammenarbeit. Ein besonderer Dank gilt zudem 
dem Bundesministerium für Wirtschaft und Energie für die  
Förderung dieses wichtigen Projekts.

Wir laden Sie herzlich ein, gemeinsam mit uns die nächsten 
Schritte zu gehen und die digitale Wärmewende zur gelebten  
Realität werden zu lassen.

Lennart Wernicke	 Benedikt Pulvermüller

Vor dem Hintergrund des voranschreitenden Klimawandels ist 
die Dekarbonisierung des Wärmesektors eine der drängendsten 
Herausforderungen unserer Zeit. Über die Hälfte des gesamten 
Endenergieverbrauchs in Deutschland entfällt auf Wärme, ein 
Sektor, der nach wie vor maßgeblich durch fossile Energieträger 
geprägt ist und somit erheblich zu unseren nationalen Treibhaus-
gasemissionen beiträgt. Um die ehrgeizigen Klimaschutzziele der 
Bundesregierung zu erreichen und unsere Abhängigkeit von fos-
silen Brennstoffen zu überwinden, braucht es entschlossene 
Maßnahmen, innovative Technologien und eine konsequente  
digitale Transformation des Wärmesystems.

Das Future Energy Lab (FEL) der Deutschen Energie-Agentur 
(dena) engagiert sich seit Jahren mit wegweisenden Projekten 
für diesen digitalen Wandel im Energiesystem und erprobt dabei 
auch den Einsatz von Künstlicher Intelligenz (KI). Im FEL wurden 
bereits mehrere wegweisende Vorhaben dazu umgesetzt: So hat 
das Projekt „EnerKI“ die Potenziale von KI für die Energiewirt-
schaft identifiziert und wertvolle Impulse für eine breitere An-
wendung gegeben. Das Folgeprojekt „Data4Grid“ hat praxisnah 
gezeigt, wie KI-Lösungen zur Optimierung der Stromnetzsteue-
rung eingesetzt werden können. Mit dem Projekt „KI in Fern
wärme“ haben wir konkrete Blaupausen für den Einsatz von KI 
speziell in der Wärmeversorgung entwickelt. Auf dieser erfolg
reichen Vorarbeit baut das Projekt „ML4FW – Maschinelles  
Lernen für Fernwärme“ nun gezielt auf und ergänzt sie um eine 
entscheidende technische Dimension: die direkte Anwendung 
von Machine Learning zur Optimierung von Bestandsanlagen.

Aktuell rückt das Fernwärmesystem verstärkt ins Blickfeld poli
tischer und wirtschaftlicher Akteure. Als kollektive Infrastruktur 
und Plattform für die Integration erneuerbarer Wärmequellen 
besitzt Fernwärme das Potenzial, urbane Quartiere effizienter, 
resilienter und nachhaltiger zu machen. Doch um dieses Po-
tenzial tatsächlich zu heben, bedarf es weit mehr als nur neuer  
Erzeugungsanlagen und einer modernisierten Infrastruktur:  
Entscheidend ist eine digitale Infrastruktur, die eine intelligente,  
datengetriebene Betriebsoptimierung ermöglicht und sowohl  
ökologisch als auch ökonomisch nachhaltige Ergebnisse liefert.
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Executive Summary



Die Fernwärme stellt eine leistungsfähige Infrastruktur dar, die 
verschiedene erneuerbare Energiequellen effizient bündeln und 
großflächig bereitstellen kann. Damit ermöglicht sie eine klima
freundlichere Wärmeversorgung für Stadtquartiere, Industrie­
areale und öffentliche Einrichtungen. Die Transformation der 
Fernwärmesysteme ist notwendig, um den Ausstieg aus fossilen 
Brennstoffen wie Kohle und Erdgas zu vollziehen. Erneuerbare 
Alternativen wie Großwärmepumpen, Solarthermie, Geothermie 
oder industrielle Abwärme sind gefragt, um fossile Wärmeerzeu-
gung abzulösen. Ein wesentlicher Schritt zur Dekarbonisierung 
des Wärmesektors ist die Digitalisierung der Fernwärmesysteme. 
Intelligente Steuerungssysteme können den Energieverbrauch 
optimieren, die Integration erneuerbarer Energien erleichtern und 
vorausschauende Wartung ermöglichen, wodurch Ausfälle und  
ineffiziente Betriebszustände reduziert werden. Insgesamt stärkt 
die Digitalisierung die Effizienz und Flexibilität des Fernwärme-
sektors und sorgt für eine noch zuverlässigere Wärmeversorgung.

Ziel des von der dena geförderten Projekts „ML4FW – Maschi-
nelles Lernen für Fernwärme“ ist es, die Anwendbarkeit und  
Effektivität von Methoden des Machine Learning (ML) für den 
realen Fernwärmebetrieb zu evaluieren und zu demonstrieren. 

Dafür wurden im Rahmen der Umsetzung eines Use Case Regler
parameter von Hausstationen (HAST) durch ML-Methoden  
optimiert. So konnten eine Absenkung der sekundärseitigen 
Rücklauftemperaturen und damit eine Effizienzsteigerung der 
Fernwärmeversorgung erreicht werden. Der Use Case zeigt die 
Anwendbarkeit und Effektivität von ML-Methoden für Fernwär-
menetze am Beispiel des Auto- und Continuous-Commissioning 
von Regelgeräten an realen Fernwärme-Hausstationen. 

Dazu wurde in der Use-Case-Demonstration die Gesamtsystem
architektur zum Auto-/Continuous-Commissioning von HAST 
aufgebaut, die eine flexible Anpassung der Reglerparameter 
und damit eine datengetriebene Optimierung ermöglicht. Das 
Auto-Commissioning umfasst die automatisierte Anpassung von 
Reglerparametern an individuelle Betriebsbedingungen, wäh-
rend Continuous-Commissioning zusätzlich eine kontinuierli-
che Anpassung an sich verändernde Betriebsbedingungen er-
möglicht. Die Datenerfassung erfolgt automatisiert über digitale  
Verbrauchszähler und Regler, die an die Plattform SAM DISTRICT 
ENERGY angebunden sind. Der Fokus lag auf den Liegenschaften 
der Neuwoba in Neubrandenburg, wo Liegenschaften mit quasi 
identischen Anlagenschemata betrachtet und somit auch ver
glichen werden konnten. Zur Umsetzung und Bewertung des 
Use Case wurden aktuelle Verbrauchsdaten und historische  
Daten aus der Plattform verwendet. Dabei mussten Herausfor-
derungen wie die Hardware-Anbindungen und das Füllen von 
Datenlücken bewältigt werden, um hinreichend nutzbare Daten-
sätze für die Simulationen und das ML-Training zu generieren. 

Zur Modellierung der Rücklauftemperaturen der Liegenschaften 
in Abhängigkeit von Heizkurvenparametern wurden Simulations
modelle erstellt. Die Validierung der Simulationsmodelle erfolgte 
anhand gemessener Rücklauftemperaturen, wobei eine mittlere 
Abweichung von etwa 1 K erzielt wurde.

Der entwickelte Ansatz für das Training der ML-Modelle zeigt, 
dass auch mit einer begrenzten Datenbasis aussagekräftige  
Optimierungen erreicht werden können. Die ML-Modelle arbei-
ten mit einem 1D-Convolutional Neural Network (1D-CNN),  
das sich als effektiv für die Analyse von Zeitreihen erwiesen hat. 
Die Trainingsdatensätze bestehen aus Simulationen, die durch 
verschiedene Reglerparametereinstellungen generiert wurden.

Die Feldtests in den Liegenschaften demonstrieren, dass durch 
die optimierten Reglerparameter eine signifikante Reduktion 
der Rücklauftemperaturen von 2 bis 3 K und eine Senkung der 
kumulierten Wärmemenge über die Vergleichstage von unge-
fähr 8-9 % erzielt werden kann. Die Antworten bei der durchge-
führten Nutzerbefragung zeigen eine hohe Zufriedenheit mit 
der Heizungsregelung, was darauf hinweist, dass die vorge-
nommenen Anpassungen effektiv waren. In dem Projekt wurde 
gezeigt, dass das betrachtete Verfahren zur Integration von  
ML-Methoden zur Optimierung von Reglerparametern von 
Hausstationen in der Fernwärme funktioniert, und damit der 
„Proof of Concept“ erbracht.  

Durch die implementierten Regelung im realen Betrieb wurde 
eine Senkung der Rücklauftemperatur um mindestens 2K er-
reicht. Dies bedeutet eine Senkung der kumulierten Wärmemenge 
über die Vergleichstage von ungefähr 8-9 % und damit eine Ein-
sparung bei den Heizkosten gegenüber dem nicht optimierten 
System. Für eine Aussage zu möglichen generellen Energieein
sparungen durch die Anpassungen muss die Datenbasis für die 
Auswertung erweitert werden.

Das Projekt verdeutlicht, dass die Potenziale des Ansatzes be-
sonders in der verbesserten Regelbarkeit in Übergangszeiten 
(Frühjahr/Herbst) liegen. Eine dynamisch angepasste Heizkurve 
könnte hier zusätzliche Effizienzgewinne erzielen. Darüber hin-
aus wurde die Möglichkeit aufgezeigt, den Ansatz auf andere Ge-
bäude mit ähnlicher Datenlage zu übertragen. Der Ansatz des 
Projekts zeigt, dass keine umfassende Sensorik (z. B. Innen-
raumtemperaturmessung) für die Anwendung der ML-Verfahren 
notwendig ist.

Die Durchführung des Use Case hat gezeigt, dass der Erfolg  
von KI- und ML-Anwendungen im Fernwärmesektor weniger 
von komplexen Algorithmen als von sauberen Prozessen,  
realistischen Zeitplänen sowie einer belastbaren Daten- und 
IT-Basis abhängt. Aus den technischen und organisatorischen 
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Erfahrungen lassen sich praxisnahe Empfehlungen ableiten, 
die zukünftige Projekte beschleunigen und typische Fallstricke 
vermeiden helfen. Im Use Case hat sich ergeben, dass die Er-
fassung der Daten und die Bereitstellung der Hardware mit  
den notwendigen Genehmigungen mehr Zeit beanspruchen  
als die Entwicklung des Codes und der Modelle. Dies ist ins
besondere in der Projektvorbereitung zu beachten. Bei der  
Datenerfassung hat sich die Priorisierung von Datenqualität 
vor zusätzlichen Messgrößen bewährt. Auch die Gewährleistung 
aller relevanten Zugänge, beispielsweise zu Schnittstellen, war 
essenziell für den Erfolg. Sind diese Grundlagen gegeben,  
lassen sich in typischen Gebäuden nach wenigen Wochen  
Effizienzgewinne erzielen.

Trotzdem sind eine Skalierung des Ansatzes in der Praxis und 
eine Standardisierung des Modells aufgrund individueller  
Gegebenheiten (wie Gebäudetechnik, Nutzerverhalten, hydrau-
lische Einbindung) anspruchsvoll. Eine direkte Übertragung 
der Methodik ist nicht ohne Weiteres möglich. Daher besteht 
weiterer Forschungsbedarf, um übertragbare Modellierungs
ansätze für typische Gebäudekonfigurationen zu entwickeln, 
ML-Ops Pipelines zur automatisierten Kalibrierung und Validie-
rung zu nutzen und rein datenbasierte Modelle zur dynamischen 
Betriebsoptimierung weiter zu erproben. 

Neben der Use-Case-Demonstration wurde eine Möglichkeit 
geschaffen, unterschiedliche Ansätze zur Nutzung von ML-
Verfahren in vergleichbarer Art und Weise zu evaluieren. Die  
erarbeitete Bewertungsmethode basiert auf einem zweistufi-
gen Konzept, in dem zunächst eine datenlose, semiquantita­
tive, also kategorisierte Einschätzung von Nutzen, Aufwand 
und Risiko ermittelt wird, um diese Parameter für die jeweilige 
ML-Anwendung zu bewerten.

Für die erste Stufe wurde im Projekt der ML4FW-Fragebogen  
erstellt, der durch die Abfrage der Präferenzen, Umstände und 
Voraussetzungen des Anwenders eine personalisierte Auswer-
tung von Informationen aus einer hinterlegten Wissensbasis  
vornimmt. Auf diese Weise kann der Anwender ohne großen  
Aufwand eine erste Einschätzung zu den im Fragebogen hinter-
legten Use Cases erhalten und auf Basis einer erstellten Über-
sicht entscheiden, welchen Use Case er tiefergehend evaluieren 
möchte. 

In der zweiten Stufe kann der Nutzer dann auf Grundlage seiner 
Daten eine genauere Auswertung des identifizierten Use Case 
durch ML-Experten vornehmen lassen, um zu einer finalen Ent-
scheidung zu gelangen. 

Die Ergebnisse der wissenschaftlichen Begleitung sind in den 
hinterlegten Experteneinschätzungen zu 19 bewerteten ML Use 
Cases in den Kategorien Instandhaltung Hausstationen, Instand
haltung Rohrleitungsnetz, Wärmebedarfsprognosen, Betriebs-
strategien Wärmenetz und Betriebsstrategien Hausstationen 
zusammengefasst. Der für die Personalisierung dieser Ein-
schätzungen konzipierte ML4FW-Fragebogen wurde in eine  
Python-Anwendung überführt, die für die Use-Case-Einschät-
zung die folgenden Schritte durchläuft:

1.	 Kategorieauswahl

2.	 Gewichtung globaler Kriterien

3.	 Gewichtung lokaler Kriterien

4.	 Beantwortung kategorieübergreifender Fragen

5.	 Kategoriespezifische Fragen zum Risiko 

6.	 Kategoriespezifische Fragen zu Daten und Aufwand

7.	 Auswertung und Visualisierung der Ergebnisse

Mit der Anwendung wurde zum ersten Mal überhaupt eine für 
Nutzer direkt einsetzbare Methode entwickelt, um ML Use Cases 
im Fernwärmesystembetrieb zu bewerten. Neuartig ist dabei der 
Ansatz einer datenlosen Einschätzung, die von potenziellen An-
wendern schnell und ohne detailliertes ML-Hintergrundwissen 
vorgenommen werden kann. Ergebnis der Anwendung ist eine 
erste semiquantitative Abschätzung von Nutzen, Aufwand und 
Risiko unterschiedlicher ML Use Cases. Damit bietet der ML4FW-
Fragebogen Akteuren aus dem Fernwärmesystembetrieb eine 
neuartige Möglichkeit zur persönlichen Einschätzung von ML 
Use Cases. 

Um dieses Tool weiterzuentwickeln, sollte zukünftig eine breitere 
Erprobung der erstellten Bewertungsmethode durch weitere  
Akteure aus dem Bereich des Fernwärmesystembetriebs 
durchgeführt werden. Durch das gezielte Einsammeln von Feed-
back können eine weitere Verbesserung und eine höhere Nut-
zerfreundlichkeit des Fragebogens sichergestellt werden.

Darüber hinaus gibt es weitere Ansätze, um das Bewertungs
konzept und den damit einhergehenden Mehrwert zu steigern: 
Weitere Expertinnen und Experten sollten eingebunden werden 
und durch konkretisierte, leichter einzuschätzende Kriterien die 
Beantwortbarkeit erhöhen. Ergänzend sollte der Fragebogen um 
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die Kategorie „Betrieb der Wärmeerzeugung“ erweitert werden, 
da hier erhebliche Potenziale für ML Use Cases vermutet werden 
und zugleich der Blick auf den Betrieb ganzer Fernwärmesysteme 
geöffnet wird. Schließlich gewinnt die Auswertung des ML4FW-
Fragebogens an Schärfe und Aussagekraft, wenn zusätzliche Um-
setzungsprojekte von ML Use Cases im Fernwärmesystembetrieb 
vorliegen und ihre Ergebnisse öffentlich verfügbar sind.

Zusammenfassend zeigt das Gesamtprojekt ML4FW, dass daten
basierte Optimierungen mittels maschinellen Lernens im  
Fernwärmebetrieb signifikante Effizienz- und damit auch  
Kostenvorteile bieten können. Die im Projekt entwickelte Be-
wertungsmethode erleichtert den Einstieg in die Anwendungen 
von ML, indem sie einen systematischen, vergleichenden Blick 

auf verschiedene Use Cases ermöglicht und ihre Priorisierung 
nach klaren Kriterien (z. B. Wirkung, Umsetzbarkeit, Datenlage, 
Reifegrad) unterstützt. Herausforderungen bestehen weiterhin 
bei der Übertragbarkeit der entwickelten Methoden auf andere 
Gebäude- und Systemtypen sowie in der fortlaufenden Schär-
fung der Bewertungslogik zur Identifikation weiterer Potenziale. 
Zukünftige Forschungsarbeiten sollten sich darauf konzentrieren, 
diese Methoden zu verfeinern, und auf eine breitere Anwendung 
sowie eine entsprechende Skalierung in der Praxis abzielen.

Die Trainings- und Optimierungs-Pipeline sowie die Unterlagen 
zur Bewertungsmethode werden unter https://github.com/
AEFDI/ML4FW/ veröffentlicht. 
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Ein Schlüsselfaktor für die erfolgreiche Dekarbonisierung ist die 
Steigerung der Netzeffizienz, insbesondere durch die Absenkung 
der System- und Rücklauftemperaturen. Hohe Rücklauftempera-
turen führen zu unnötigen Netzverlusten und schränken die Inte
gration von Niedertemperaturquellen (wie Abwärme oder Wärme 
aus Solaranlagen oder Wärmepumpen) erheblich ein. Ein nicht 
optimierter Betrieb führt gegebenenfalls zu einem höheren 
Brennstoffeinsatz, sprich unnötigen CO2-Emissionen. Die Opti-
mierung der Hausstationen und der sekundärseitigen Anlagen 
ist für die Netzoptimierung essenziell, um den Wärmebedarf effi-
zient und möglichst verlustarm zu decken. Die im Projekt ML4FW 
eingesetzten Methoden des maschinellen Lernens adressieren 
genau diese Herausforderung, indem sie eine automatisierte, 
kontinuierliche Anpassung der Reglerparameter an die aktuellen 
Betriebsbedingungen ermöglichen.

Fernwärme ist damit nicht nur ein technisches Bindeglied zwi-
schen Erzeugung und Verbrauch, sondern auch ein Innovations-
feld für die Entwicklung neuer, intelligenter Steuerungs- und  
Optimierungslösungen, die einen wesentlichen Beitrag zur  
Erreichung der Klimaziele leisten können.

1.2  Digitalisierung in der Fernwärme
Ein wesentlicher und notwendiger Schritt zur Umsetzung der 
Strategien zur Dekarbonisierung des Wärmesektors ist eine um-
fassende Digitalisierung in der Fernwärme. Die Digitalisierung 
kann zur Dekarbonisierung der Fernwärme beitragen, beispiels-
weise durch (vgl. dena 2024):

	■ Effizienzsteigerung: Durch den Einsatz intelligenter  
Steuerungssysteme kann der Energieverbrauch optimiert 
und Verluste können minimiert werden.

	■ Integration erneuerbarer Energien: Digitale Systeme  
erleichtern die Integration und Steuerung erneuerbarer 
Energiequellen wie Solar- und Geothermie.

	■ Datenanalyse: Durch die Analyse von Verbrauchsdaten  
können Schwachstellen identifiziert und gezielte Maßnahmen 
zur Reduktion von CO₂-Emissionen ergriffen werden.

	■ Vorausschauende Wartung: Digitale Überwachung  
ermöglicht eine proaktive Wartung, wodurch Ausfälle  
und ineffiziente Betriebszustände vermieden werden.

	■ Nutzerverhalten: Smarte Technologien können das Nutzer-
verhalten beeinflussen und zu einem bewussteren Umgang 
mit Energie führen.

Insgesamt stärkt die Digitalisierung die Effizienz und Flexibilität 
des Fernwärmesektors, fördert die Integration nachhaltiger  
Energiequellen und sorgt für eine zuverlässige Wärmeversorgung, 
was sowohl ökologisch als auch ökonomisch von Vorteil ist.

Wie viele andere Industrieländer hat sich auch Deutschland mit 
dem Pariser Klimaschutzabkommen verpflichtet, bis zum Jahr 
2045 klimaneutral zu werden. Um dieses ehrgeizige Ziel zu errei-
chen, müssen in allen Sektoren die Emissionen von sogenann-
ten Treibhausgasen reduziert und schließlich vermieden wer-
den. Besonders der Energiesektor steht hier in der Pflicht.

Im Allgemeinen liegt der Fokus für die zu ergreifenden Maßnah-
men in der öffentlichen Wahrnehmung auf der Transformation 
im Stromsektor. Durch die Zunahme der Stromerzeugung aus 
erneuerbaren Energiequellen konnte im Stromsektor schon viel 
erreicht werden. Doch über 50 Prozent des deutschen Endener-
gieverbrauchs entfallen auf den Wärmebereich. So ist diesem 
Verbrauchssektor für die Erreichung der oben beschriebenen 
Ziele besondere Beachtung zu schenken. Die Transformation  
der gesamten Wärmeinfrastrukturen und die Umsetzung der 
Wärmeversorgung von Gebäuden stellen einen wichtigen 
Schwerpunkt für die Umsetzung der Wärmewende dar. Dem 
Ausbau der leitungsgebundenen Wärmeversorgung und der  
Umsetzung der Wärmeerzeugung in den Wärmenetzen kommen 
eine besondere Relevanz zu.

1.1  Relevanz der Fernwärme für die Energiewende
Die Zukunft der urbanen Wärmeversorgung liegt in der intelli-
genten Vernetzung von Erzeugung, Verteilung und Verbrauch – 
und genau hier setzt die Fernwärme als leistungsfähige Infra-
struktur an. Die besondere Stärke der Fernwärme besteht in 
ihrer Fähigkeit, sowohl konventionelle als auch erneuerbare 
Energiequellen effizient zu bündeln und großflächig bereitzu-
stellen. Mit dem Rohrsystem der Fernwärme ist es möglich, Ab-
wärme oder Wärme aus unterschiedlichen Quellen einzusam-
meln und über dieses Rohrsystem den angeschlossenen Kunden 
zur Verfügung zu stellen. Dadurch können ganze Stadtquartiere, 
Industrieareale und öffentliche Einrichtungen mit klimafreund­
licherer Wärme versorgt werden.

Mit Blick auf die Klimaschutzziele der Bundesregierung und  
die Vorgaben des europäischen Green Deal ist eine tiefgreifende 
Transformation der Fernwärmesysteme erforderlich. Der Aus-
stieg aus Kohle und perspektivisch auch aus Erdgas macht es 
notwendig, fossile Wärmeerzeugung durch erneuerbare Alter-
nativen wie mit Grünstrom betriebene Großwärmepumpen, 
Solarthermie, Geothermie oder industrielle Abwärme zu ersetzen. 
Auch im Gebäudeenergiegesetz (GEG), wo ein Anteil von 65 Pro-
zent erneuerbarer Energien für den Betrieb von neu eingebauten 
Wärmeerzeugern in Wohngebäuden vorgeschrieben wird, oder 
im Wärmeplanungsgesetz (WPG), in dem die Verpflichtung zur 
Wärmeplanung von Kommunen geregelt ist, bei der der mög
liche Ausbau der Fernwärmeversorgung mit betrachtet wird, 
wird die Relevanz der Fernwärme für die zukünftige Wärme­
versorgung herausgestellt. Die Fernwärme bietet für den Um-
bau der Wärmeversorgung eine ideale Infrastruktur, denn sie 
erlaubt eine flexible Einbindung und Verteilung unterschied-
lichster Energiequellen.
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1.3  Potenziale für Machine Learning in der  
Fernwärme
Eine spezielle Möglichkeit für weitere Effizienzsteigerungen im 
Fernwärmebetrieb bietet die Digitalisierung beispielsweise durch 
die Analyse großer Datenmengen mittels moderner Algorithmen 
des Machine Learning (ML). Die daraus abgeleiteten Ergebnisse 
oder Entscheidungsgrundlagen versprechen eine Verbesserung 
des Wärmesystembetriebs. Neben dem in diesem Vorhaben fo-
kussierten Anwendungsfall der Optimierung von Reglerparame-
tern der Hausstationen (HAST) gibt es weitere Anwendungsfälle, 
wie detaillierte Wärmebedarfsprognosen für einen besser abge-
stimmten Anlagenfahrplan, der die Einbindung von Flexibilitäten 
innerhalb eines Fernwärmenetzes berücksichtigt und damit auch 
den Einsatz kostengünstiger erneuerbarer Energien für die Wär-
mebereitstellung steigern kann (Mbiydzenyuy 2021). Auch bei der 
vorausschauenden Wartung (Predictive Maintenance) kommen 
ML-Verfahren zum Einsatz, um Wartungsmaßnahmen frühzeitig 
zu identifizieren, die Versorgungsqualität aufrechtzuerhalten und 
kostenintensive Schäden durch eine rechtzeitige Reparatur zu 
vermeiden.

Im Fernwärmesektor eröffnen sich vielfältige Anwendungsmög-
lichkeiten für ML, die erhebliches Potenzial zur Steigerung der  
Effizienz von Fernwärmesystemen und ihres Betriebs bieten.  
Aktuell werden bereits unterschiedliche Use Cases für ML in der 
leitungsgebundenen Wärmeversorgung getestet. Sie decken  
jedoch bisher nur einen geringen Teil der möglichen Anwen
dungen in der Fernwärme ab. Der in diesem Projekt entwickelte  
Ansatz möchte einen Beitrag zum weiteren Einsatz von ML-
Methoden im Fernwärmebetrieb liefern. Weiterhin wird in die-
sem Bericht auch eine Methode zur Bewertung und zum Ver-
gleich von unterschiedlichen ML Use Cases vorgestellt, womit es 
möglich wird, von verschiedenen ML Use Cases zu lernen und 
diese Methoden auf die zum Teil sehr unterschiedlichen Fern-
wärmesysteme zu übertragen. Somit wird ein Ansatz zur Anlei-
tung für einen wirksamen Einsatz der Technologie im Bereich 
der Fernwärmeversorgung geboten. 

1.4  Use Case: Optimierung der  
Rücklauftemperaturen
Der Ausbau und die Transformation sowie die Dekarbonisie-
rung der Wärmenetze unter anderem durch die Integration  
hoher Anteile erneuerbarer Energiequellen sind für die Errei-
chung der gesetzten Klimaschutzziele dringend geboten. Eine 
Absenkung der Systemtemperaturen in den Wärmenetzen er-
öffnet die Möglichkeit eines effizienten Anlagenbetriebs und 
der effizienteren und gegebenenfalls dezentralen Einbindung 
größerer Mengen erneuerbarer Wärme. Auch ökonomisch sind 
Maßnahmen zur Reduktion der Systemtemperaturen ange-
zeigt, da sich ca. 0,5 bis 0,65 €/MWh⋅K einsparen lassen, was 

EU-weit ein Einsparpotenzial von ca. 14 Mrd. €/a bei der Reduk
tion der Systemtemperaturen von 30 K ergibt (Averfalk et al. 
2021). Eine effiziente Auskühlung des Rücklaufs erhöht darüber 
hinaus die sogenannte Spreizung, also die Temperaturdifferenz 
von Vor- und Rücklauf, was direkt in einer erhöhten Transportka-
pazität des Fernwärmesystems resultiert und Raum für weitere 
Anschlüsse ohne eine Netzverstärkung bietet. 

Insbesondere im unsanierten Gebäudebestand ergeben sich tech-
nologische Herausforderungen, um auch bei reduzierten Vorlauf-
temperaturen eine ausreichende Wärmeversorgung sicherzustel-
len. In Abhängigkeit von der angestrebten Höhe der Absenkung 
der Netzvorlauftemperatur können in Bestandsgebäuden Pro­
bleme auftreten: Die benötigte Heizleistung lässt sich möglicher-
weise durch das Heizungssystem nicht vollständig bereitstellen 
oder das bestehende Temperaturniveau reicht nicht aus, um die 
Raumheizlast über die vorhandenen Wärmeübergabesysteme zu 
decken. Zudem muss sichergestellt sein, dass die sekundärseitig 
erreichbaren Temperaturen nach der Absenkung für die hygieni-
sche Trinkwarmwasserbereitung ausreichen. Eine erste Lösungs-
strategie ist die Beseitigung von fehlerhaften Ausführungen oder 
falschen Einstellungen der Anlagentechnik, um eine zwischen 
dem Fernwärmeversorgungsunternehmen und dem Kunden in 
den Technischen Anschlussbedingungen (TAB) vereinbarte Rück-
laufauskühlung zu realisieren. Schon die Beseitigung von Fehlern 
an einer geringen Anzahl von Gebäudesystemen hat einen großen 
Effekt auf die Effizienz eines Wärmenetzes (Schmidt 2023).

Um diese Lösungsstrategie erfolgreich umzusetzen, ist der ein-
wandfreie Betrieb aller Hausstationen essenziell. Neben der Prü-
fung der korrekten baulichen Umsetzung der Anlagen sind die 
Parameter der verbauten Stationen an die im speziellen Fall vor-
handenen spezifischen sekundärseitigen Anlagen (Raumwärme-
verteilung und Trinkwarmwasserbereitung) und die wärmenetz-
seitigen Gegebenheiten anzupassen. In der Praxis sind jedoch 
oft Stationen mit Reglern auf Werkseinstellung vorzufinden. 

▶  Für die Realisierung einer effizienten und kostengünstigen 
leitungsgebundenen Wärmeversorgung müssen die System-
temperaturen und im Besonderen die Rücklauftemperaturen 
gesenkt werden. Dies lässt sich im Wärmenetzbetrieb nur 
durch eine Optimierung der Hausstationen mit den sekundär-
seitigen Anlagen erreichen. Dazu sind die Betriebsparameter 
der Regler der Stationen jeweils optimal an die aktuellen Be-
triebszustände anzupassen. Der Betrieb der Wärmenetze wird 
über eine Digitalisierung der Anlagen effizienter, was zu stabi-
leren Wärmepreisen und zu einer günstigeren Wärmeversor-
gung führt.
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1.5  Zentrale Bedeutung der Wohnungswirtschaft 
für die Fernwärme
Der Wohnungsbau und die Wohnungswirtschaft spielen eine 
zentrale Rolle für die Entwicklung und den Ausbau der Fernwär-
me in Deutschland. So ist die Wohnungswirtschaft in Deutsch-
land der größte Abnehmer von Fernwärme. Besonders im Miet-
wohnungsbau ist Fernwärme weit verbreitet, da sie sich gut für 
die zentrale Versorgung ganzer Wohnanlagen eignet. Weiterhin 
ist die Wohnungswirtschaft ein entscheidender Akteur bei der 
Erreichung der Klimaziele. Durch die Umstellung der Gebäude 
auf eine Fernwärmeversorgung, insbesondere wenn diese aus 
erneuerbaren Energien oder Abwärme stammt, können große 
CO₂-Einsparungen erzielt werden. Dazu zählt auch, dass gerade 
für die Wohnungswirtschaft eine verlässliche, langfristige Wär-
meplanung essenziell ist. Nur mit Planungssicherheit können 
Wohnungsunternehmen die notwendigen Investitionen in die 
Infrastruktur tätigen und die Mietpreise stabil halten. Fernwärme 
ist wartungsarm und bietet sowohl für Vermieter als auch für die 
Bewohnerinnen und Bewohner eine hohe Versorgungssicherheit 
und großen Komfort. Die Kosten sind in der Regel langfristig kal-
kulierbar. 

Aufgrund der zentralen Rolle der Wohnungswirtschaft wurde für 
dieses Projekt zur Optimierung des Fernwärmebetriebs ein Part-
ner aus der Wohnungswirtschaft, die Neubrandenburger Woh-
nungsbaugenossenschaft eG (Neuwoba), eingebunden und der 
Fokus auf die Optimierung der Hausstationen bei der Wärmever-
sorgung von Mietwohnungen gelegt.  

Die Neuwoba beheizt ca. 90 Prozent ihres Bestands mit Fernwär-
me. Durch die Energiekrise in Verbindung mit dem Krieg in der 
Ukraine wurde deutlich, dass nicht nur die Wärmeerzeuger oder 
der Wärmetransport in den Netzen von entscheidender Bedeu-
tung für den Energieverbrauch sind, sondern in ganz besonde-
rem Maße auch die Verbraucher. Dazu zählen die Hausstationen 
(HAST) und natürlich auch die Mieterschaft. 

Für die Neuwoba ist es entscheidend, einen besseren Überblick 
und mehr Informationen über die HAST zu erhalten – etwa dar
über, ob alle HAST richtig konfiguriert sind, ob die Zirkulation in 
den Gebäuden optimiert läuft oder ob es auf der Abnehmerseite 
zu hohe Wärmeverluste gibt. Erste Bestandsaufnahmen mittels 
Excel oder handschriftlicher Tabellen stellen kein praktikables, 
dauerhaftes Mittel zur Optimierung der Verbraucherseite dar. So 
wurden Schritte zur Digitalisierung bzw. zur Erstellung von digita-
len Zwillingen der HAST eingeleitet, was aus Sicht der Neuwoba 
einige Vorteile mit sich bringt, wie beispielsweise:

	■ Einstellung von Kennlinien/Heizzeiten/Warmwasser
temperaturen usw.

	■ Dauerhaftes Aufzeichnen aller Fühlertemperaturen
	■ Erkennen von Ausfällen oder Anomalien in der Regelung
	■ Besseres Reagieren auf Mieterbeschwerden
	■ Optimierungsmöglichkeiten mittels:

	■ Machine Learning (ML)
	■ Wettervorhersage
	■ Einbinden von Konzepten zur vorausschauenden  

Wartung
	■ Optimierung der Anschlusswerte durch Peak Shaving

Mit der Digitalisierung der HAST ist ein großer Informationsge-
winn hinsichtlich des Heizungssystems auf der Verbraucherseite 
verbunden. Die Senkung des Energieverbrauchs kann in verschie-
densten Fällen bis zu 30 Prozent betragen (Techem 2025). Mithilfe 
von KI- und ML-Methoden wird dauerhaft die für das Gebäude op-
timal benötigte Energieversorgung ermittelt. Aus der Sicht der 
Neuwoba ist die Fernwärme das richtige Mittel zur klimaneutralen 
Wärmewende. Voraussetzung dafür ist jedoch, dass zunächst die 
Verbraucherseite optimal eingestellt ist. Darauf aufbauend muss 
der Wärmetransport möglichst effizient und mit geringen Wärme-
verlusten erfolgen. Erst dann lässt sich die tatsächlich benötigte 
Wärmeerzeugung sinnvoll bestimmen, um die Gebäude bedarfs-
gerecht zu versorgen. Ziel ist es, nur die notwendige Vorlauftem-
peratur zu erzeugen und auf Verbraucherseite eine möglichst 
niedrige Rücklauftemperatur ins Netz zu erreichen.   

1.6  Einordnung des gewählten Use Case
Wie in Kapitel 1.4 beschrieben, ist die Reduktion der Rücklauf-
temperaturen ein für die Transformation der Fernwärme und 
der Wärmeversorgung entscheidender Schritt. Somit wurde für 
dieses Projekt die Zielstellung gewählt, die Anwendbarkeit und 
Effektivität von Methoden des maschinellen Lernens für das 
Auto- und Continuous-Commissioning von Regelgeräten an rea-
len Fernwärme-Hausstationen mit dem Ziel der Reduktion der 
Rücklauftemperaturen zu demonstrieren. Unter Auto-Commis­
sioning wird hier die automatisierte Anpassung von Reglerpara-
metern, die sich zunächst in der Werkseinstellung befinden, an 
die individuellen Betriebsbedingungen des jeweiligen Gebäudes 
verstanden. Dies soll sicherstellen, dass eine optimale Regelung 
der HAST erreicht wird. Beim Continuous-Commissioning wird 
zudem eine kontinuierliche Anpassung der Reglerparameter an 
sich verändernde Betriebsbedingungen durchgeführt. Um diese 
Ziele zu erreichen, wurden im Rahmen des hier beschriebenen 
Projekts die Entwicklung, Umsetzung und Demonstration einer 
ML-Ops Pipeline1 verfolgt. Diese Pipeline nutzt Messdaten der 

1	� ML-Ops (Machine Learning Operations) ist ein Konzept, das zum Ziel hat, ML-Modelle über ihren gesamten Lebenszyklus hinweg im Betrieb weiterzuentwickeln, bereitzustellen, zu überwachen und kontinuierlich zu ver-
bessern.
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Regelgeräte sowie Verbrauchs- und Umgebungswerte, um die 
optimalen Reglerparameter zu berechnen und sie anschließend 
an die Regelgeräte zu übermitteln (vgl. Kapitel 2). Ein wesentli-
cher Vorteil dieser Herangehensweise ist, dass eine Optimierung 
der Parameter auf Basis gewonnener Daten erfolgt, für den si-
cheren Betrieb des Reglers dann jedoch keine permanente Da-
tenverbindung benötigt wird. So lassen sich viele Probleme in 
der praktischen Anwendung vermeiden und ein störungsfreier 
Betrieb ohne Konnektivitätsprobleme kann gewährleistet werden. 
Durch die Anpassung der Reglerparameter wird die optimale Re-
gelung von HAST gefördert und die Methode trägt zur Effizienz-
steigerung und Nachhaltigkeit in der Wärmeversorgung bei.

1.7  Aufbau und Struktur des  
Entwicklungsprojekts
Das Vorhaben „ML4FW – Maschinelles Lernen für Fernwärme“ glie-
dert sich in zwei inhaltliche Schwerpunkte: zum einen in die Ent-
wicklung und Erprobung des gewählten Use Case für den Einsatz 
von ML-Verfahren im Fernwärmesystembetrieb (wie in Projektteil 1 
(Kapitel 2) beschrieben), zum anderen in die Entwicklung einer 
Methodik zur Bewertung von ML Use Cases in der Fernwärme, in-
klusive der wissenschaftlichen Begleitung bei der Erprobung des 
Use Case (wie in Projektteil 2 (Kapitel 3) beschrieben). 

Diese beiden Schwerpunkte werden im Folgenden weiter ausge-
führt und detailliert erörtert. Die Schwerpunkte wurden von den 
Konsortialpartnern im engen Austausch bearbeitet. 

Use-Case-Erprobung Wissenscha�liche Begleitung 

Abbildung 1: Konsortium und Zusammenarbeit in den beiden Teilvorhaben des Projekts
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des maschinellen Lernens demonstriert. Für die Umsetzung 
wurde die in Abbildung 2 dargestellte Gesamtsystemarchitektur 
gewählt. Die einzelnen Schritte werden im Folgenden ausführ-
lich beschrieben.

Wie in Kapitel 1.6 beschrieben, werden in diesem Vorhaben an 
dem Anwendungsfall der automatischen Einstellung der Para-
meter von Regelgeräten in Hausstationen in der Fernwärmever-
sorgung die Anwendbarkeit und die Effektivität von Methoden 

2.1  Schaffung der Datengrundlage für das Projekt
Die Erfassung der für das Vorhaben benötigten Daten aus den 
Hausstationen der Umsetzungsgebäude erfolgte automatisiert 
über digitale Verbrauchszähler, Regler und Netzpumpen, die an 
das System SAM DISTRICT ENERGY angebunden sind. Die Ausle-
sewerte dieser Geräte werden in festlegbaren Intervallen (z. B. 
stündlich, täglich, monatlich) erfasst und über Gateways an die 
zentrale Plattform SAM DISTRICT ENERGY übertragen.

Im Rahmen des Projekts lag der Fokus der Datenerfassung auf 
den Liegenschaften der Neuwoba Petrosawodsker Straße 66-72 
und Petrosawodsker Straße 42-48 in Neubrandenburg. Eine  
detaillierte Beschreibung der Liegenschaft Petrosawodsker 
Straße 66-72 erfolgt in Kapitel 2.4. Beide Liegenschaften besit-
zen ein identisches Anlagenschema der Heizungssysteme und 
befinden sich in örtlicher Nähe zueinander. Die Anlagensche-
mata werden für die Dokumentation ebenfalls in SAM DISTRICT 
ENERGY beschrieben. So ist die Information, wie die einzelnen 
Komponenten eines Heizungssystems (z. B. Zähler, Pumpen, 
Regelungen) miteinander verschaltet sind, jederzeit abrufbar. 
Die Wahl und die Ausgestaltung des Anlagenschemas wirken  
sich direkt auf die Art, Anzahl und Qualität der im Portal ver-
fügbaren Datenpunkte aus. Das einheitliche Anlagenschema 
ermöglicht eine Übertragbarkeit bzw. Vergleichbarkeit der 
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Abbildung 2: Gesamtsystemarchitektur für die Realisierung des Use Case

Daten der Liegenschaften. Die Daten aus der Petrosawodsker 
Straße 66-72 wurden vor allem für die Implementierung der Algo-
rithmen genutzt, während jene der Petrosawodsker Straße 44-48 
in erster Linie für Validierungszwecke im Feldtest dienten.

Für die erforderlichen Simulationen und das ML-Training wurden 
folgende weitere Anforderungen an die Datenbasis im Rahmen 
des Vorhabens definiert:

1.	 Feingranulare historische Datensätze: Sie ermöglichen die 
Abbildung auch kurzzeitiger Warmwasser-Zapfvorgänge.

2.	 Auswahl relevanter Datenpunkte: Beinhaltet unter anderem 
Temperaturen, Stellsignale sowie Leistungswerte an Reglern 
und Wärmemengenzählern. Eine detaillierte Auflistung der ver-
wendeten Datenpunkte befindet sich im Anhang in Tabelle 9.

3.	 CSV als Ziel-Dateiformat: Das benutzerfreundliche Format 
wird von Microsoft Excel, Python und MATLAB umfassend  
unterstützt.

Die Datensatzerstellung für die weitere Verarbeitung erfolgte sei-
tens des Fraunhofer IEE durch die Extraktion der Daten aus der 
Plattform SAM DISTRICT ENERGY über verschiedene Ansätze:
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1.	 Datenabruf über die REST-API von SAM DISTRICT ENERGY  
Die Plattform SAM DISTRICT ENERGY stellt eine REST-API im 
OpenAPI-Format bereit, über die Daten automatisiert abgeru-
fen werden können. Zur Authentifizierung muss ein Zugangs-
Token übermittelt werden, wobei nur die Daten abgerufen 
werden, die für dieses Token sichtbar sind. Anhand der API-
Beschreibung wurde ein Python-Client generiert, um den au-
tomatisierten Datenabruf zu realisieren. Die empfangenen 
JSON-Daten wurden anschließend in das gewünschte CSV-
Format konvertiert. Dieser Ansatz ermöglicht flexibel konfigu-
rierbare Anfragen in Bezug auf Datenpunkte und Auflösung 
und erlaubt zudem den Abruf aktueller Echtzeitdaten. Aller-
dings eignet sich dieser Weg weniger gut für den Abruf großer 
historischer Datensätze, da sowohl die Anzahl der Datenpunk-
te pro Anfrage als auch die Anfragelimits begrenzt sind.

2.	 Exportfunktion der grafischen Oberfläche von  
SAM DISTRICT ENERGY  
Die grafische Nutzeroberfläche von SAM DISTRICT ENERGY 
unterstützt neben ersten visuellen Datenanalysen über eine 
Chart-Ansicht auch den CSV-Export. Dabei können Konfigura-
tionen wie das Berechnen neuer Datenpunkte aus bestehen-
den Werten oder die gleichzeitige Darstellung von Werten 
verschiedener Geräte vorgenommen werden. Die exportier-
ten Daten enthalten außerdem Meta-Informationen darüber, 
ob es sich um Roh-Messwerte oder zum Beispiel durch Inter-
polation berechnete Werte handelt.

3.	 Direkter Datenbank-Export seitens SAMSON 
Dieser Ansatz kam im Fall des Ausfalls eines Reglers zum Ein-
satz, wenn die Plattformdaten nicht mehr verfügbar waren. 
Obwohl die als CSV vorliegenden Rohdaten erst vorverarbei-
tet werden mussten – etwa hinsichtlich der Einheitenkonver-
tierung oder der Kategorisierung –, stellte dies eine wertvolle 
Backup-Lösung dar.

Alle dargestellten Methoden fanden im Projektzeitraum Anwen-
dung. Für jedes Verfahren wurden spezifische Vorverarbeitungs-
algorithmen entwickelt, um sämtliche Ausgangsdatenformate in 
ein einheitliches Zieldateiformat zu überführen.

Die Erstellung der Datensätze gestaltete sich teilweise herausfor-
dernd und spiegelte die typischen Probleme bei der fortschrei-
tenden Digitalisierung von Regel- und Messsystemen wider:

	■ Ausstehende Hardware-Anbindung  
Der Wärmemengenzähler (WMZ) wurde im November 2024 an-
gebunden, sodass ein vollständiger Datensatz für die Simulati-
onen erst erstellt werden konnte, nachdem ausreichend Daten 
vom neuen Wärmemengenzähler erfasst worden waren.

	■ Ausfall/Neuanschluss von Geräten  
Am Rande des Vor-Ort-Treffens am 26.11.2024 in Neubranden-
burg wurde festgestellt, dass einige Messergebnisse nicht 
plausibel waren, was eine Neuinbetriebnahme der Mess
technik erforderlich machte. Daher wurde der Regler am 
06.12.2024 mit einer angepassten Konfiguration neu in Betrieb 
genommen, was zu Lücken in den verfügbaren Daten führte. 

Aus diesem Grund und aufgrund ähnlicher Außentemperatu-
ren wie im November wurde der Zeitraum für die Simulations-
daten auf Anfang Dezember bis Mitte Januar festgelegt. Ein fi-
naler Datensatz mit den gültigen Daten des Reglers und des 
WMZ für den Zeitraum 06.12.2024 bis 13.01.2025 konnte er-
folgreich exportiert werden.  

Nach dem Austausch eines Gateways kam es zu einer unvoll-
ständigen Konfiguration bei einem Wärmemengenzähler. 
Dies führte zu einer Datenlücke bei den WMZ-Daten im Zeit-
raum 26.02.2025 bis 28.03.2025. Da dieser Zeitraum den 
Feldtest mit geplantem Beginn am 17.02.2025 einschloss, 
konnten die Daten zur Feldtest-Auswertung erst ab dem 
28.03.2025 vollständig erhoben werden. Um die Datenbasis für 
den Feldtest zu erweitern konnten zusätzlich Messdaten für 
den Zeitraum 24.11.2025 bis 15.12.2025 gewonnen werden.

	■ Perioden verminderter Datenqualität  
Konnektivitätsprobleme führten zu zeitweilig eingeschränkter 
Messqualität. Zwischen dem 26.01.2025 und 26.02.2025 traten 
Störungen bei der Verbindung zwischen dem Gateway sowie 
dem Regler und dem Wärmemengenzähler der Liegenschaft 
auf. In diesem Zeitraum wurden statt minütlich nur sporadisch 
Werte an SAM DISTRICT ENERGY übertragen, sodass dieser 
Zeitraum für die weitere Verarbeitung und Auswertung nicht 
berücksichtigt werden konnte.

	■ Fehlende Sensoren  
Das Verhalten der in der Anlage verbauten Pumpen wurde 
nicht ausreichend messtechnisch erfasst, sodass der Massen-
strom sekundärseitig nicht bekannt war. Auch für die Aus-
wertung des Feldtests relevante Größen wie beispielsweise 
die tatsächliche Raumtemperatur war nicht bekannt. Für die 
Simulation stand jedoch die Rücklauftemperatur im Sekun-
därheizungskreis zur Verfügung.

	■ Fehlende Isolation einzelner Datenpunkte  
Da die WMZ-Daten sowohl die Heizleistung für die Raumwär-
meversorgung als auch die Warmwasserzapfungen abbilden, 
wurden die Daten nachträglich um die Trinkwarmwasser-Zapf-
vorgänge bereinigt, um so nur die Raumheizung betrachten zu 
können. Dies erfolgte durch die gleichzeitige Betrachtung der 
WMZ-Daten und des Zustands der Speicherladepumpe aus den 
Reglerdaten. Die Ersatzwerte in Zeiträumen, in denen die Spei-
cherladepumpe aktiv war, wurden durch Interpolation ermit-
telt, um das langsame Schließen des Heizkreises durch die 
konfigurierte Inversregelung des Reglers abzubilden. Zudem 
wurde in dem Datensatz ein „Marker“ hinterlegt, der es auch 
im Nachhinein ermöglicht, festzustellen, an welchen Stellen 
die Bereinigung stattgefunden hat.

	■ Eingeschränkte Nutzbarkeit bestimmter Zeiträume  
Um die Qualität der optimierten Reglerparameter zu evaluie-
ren, mussten zusätzliche Prüfungen durchgeführt werden, 
um sicherzustellen, dass die Außentemperaturen während 
der Auswertung den Bedingungen der Datenerfassung ent-
sprachen.
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Trotz dieser Herausforderungen konnten hinreichend nutzbare 
Datensätze für die nötigen Simulationen, das ML-Training und 
die Feldtest-Auswertung erstellt werden. Die detaillierten Ver-
fahren zur weiteren Implementierung der Modelle werden in 
den folgenden Kapiteln 2.2 und 2.3 erläutert, die Ergebnisse des 
Feldtests werden in Kapitel 2.5 dargestellt.

2.2  Aufbau eines Simulationsmodells  
für die untersuchten Anlagen  
Die erhobenen Messdaten bildeten die Grundlage für die  
Modellierung und die Simulation der HAST der Liegenschaft 
Petrosawodsker Straße 66-72. Diese hatten das Ziel, die Rück-
lauftemperatur der Liegenschaft in das Wärmenetz in Abhän-
gigkeit von der Parametrierung der Heizkurve des Reglers der 
HAST simulativ abzubilden, um so einen Trainingsdatensatz für 
die ML-Modelle zu erzeugen. Zunächst wurden die Messdaten 
in MATLAB eingelesen und vorprozessiert. Hierbei erfolgte neben 
der Extraktion der Parameternamen und Einheiten eine Inter-
polation auf einen äquidistanten 1-minütigen Zeitvektor, um 
die leicht variierenden Zeitstempel der gemessenen Daten  
zu harmonisieren.

Im Vorfeld der detaillierten Simulation wurde analysiert, wel-
che Heizkörper in der Liegenschaft installiert sind und ob die 
vorhandenen Flächen eine Reduktion der Rücklauftemperatur 
ermöglichen. Die Untersuchung der Heizlast des Gebäudes im 
Vergleich zur Kapazität der Heizkörper ergab, dass die Liegen-
schaft aufgrund der großzügig dimensionierten Heizkörper gut 
für die durchzuführenden Untersuchungen im Projekt geeignet 
war. Durch großzügig oder gegebenenfalls auch mehr als aus-
reichend dimensionierte Heizkörper besteht die Möglichkeit, 
durch die Anpassung des Durchflusses durch das Heizungssys-
tem niedrige Rücklauftemperaturen zu erzielen, was in diesem 
Vorhaben untersucht und erreicht werden sollte.  

Die Daten des WMZ umfassen, wie oben bereits beschrieben, so-
wohl die Heizwärmemengen als auch die des Trinkwarmwassers 
(TWW). Nach Erhalt der WMZ-Daten musste zunächst eine geeig-
nete Methodik zur Abschätzung der Wärmebedarfe für das TWW 
auf Basis der Ein- bzw. Ausschaltzeitpunkte der TWW-Pumpe 
entwickelt werden. Anschließend konnten die Heizleistungen 
durch Subtraktion dieser Daten ermittelt werden.

Aufbauend auf den in MATLAB verarbeiteten Daten wurden die 
HAST und das Gebäude in Simulink (Mathworks 2025a) unter 
Verwendung von Simscape (Mathworks 2025b) modelliert. Eine 
Herausforderung dabei war, dass der sekundärseitige Massen-
strom nicht bekannt war und von der sekundärseitigen Pumpe 
nur der Zustand (Ein/Aus) erfasst wird. Da die gebäudeseitige 
Rücklauftemperatur, neben weiteren Faktoren, unter anderem 
auch vom Massenstrom abhängig ist, war eine Abschätzung die-
ser Werte nötig. Sie wurde anhand einer vereinfachten Modellie-
rung der Sekundärseite, bei der das Gebäude als ein Raum mit 
einem Heizkörper betrachtet wird, durchgeführt. Daraus ergibt 
sich ein Gleichungssystem, das die genannten Abhängigkeiten 
implizit beschreibt. Um dieses zu lösen, kam der numerische 
Solver „daessc“ von Simscape zum Einsatz.

Abbildung 3 zeigt eine schematische Darstellung des aufgebauten 
Simulationsmodells. Das Konzept der Modellierung ist es, dabei 
die Auswirkungen von Veränderungen der Reglerparameter (Vio-
lett) auf die primärseitigen Rücklauftemperaturen (Türkis) zu 
quantifizieren. Als weitere Eingangsgrößen werden die primärsei-
tige Vorlauftemperatur, die primärseitige Wärmeleistung und die 
Außentemperatur verwendet (Hellviolett). Es handelt sich hierbei 
um Messdaten (vgl. Kapitel 2.1), die zeitabhängig und für jeden Si-
mulationsdurchlauf identisch hinterlegt sind. Die physikalischen 
Zusammenhänge sollen dabei realitätsnah abgebildet werden. 
Der zuvor erläuterten Herausforderung mit dem gebäudeseitigen 
Massenstrom wird mithilfe des Hilfsreglers (Petrol) begegnet.
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Abbildung 3: Schematische Darstellung des Simulationsmodells
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Abbildung 4: Beispielhafter Vergleich der simulierten Rücklauftemperaturen mit den vorherigen (orIgInal: m = 0,7, Niveau = 3,0) und den angepassten (optimiert: m = 0,6, Niveau = 0,0)  
Reglereinstellungen vom 15.12.2024 bis 20.12.2024

Im Anschluss wurde das Simulationsmodell für die Liegenschaft 
parametriert und validiert. Es wurden Simulationen für verschie-
dene Reglerparametersätze durchgeführt und die Ergebnisse 
wurden in einem Datensatz für weitere Arbeiten bereitgestellt. 
Die Parametrierung des Modells basiert weitestgehend auf den 
verfügbaren Dokumenten zur HAST sowie zum Gebäude und sei-
nen Heizkörpern. Parameter, die nicht dokumentiert sind, wur-
den abgeschätzt und mithilfe eines iterativen ADAM-Verfahrens 
(Adaptive Moment Estimation) optimiert, um die Messwerte der 
Rücklauftemperaturen möglichst genau abzubilden.

Die Validierung des Modells erfolgte zunächst getrennt für das 
HAST- und das Sekundärseitenmodell (vgl. Abbildung 3) und an-
schließend für das Gesamtmodell. Als Referenz dienten in allen 
Fällen die jeweiligen gemessenen Rücklauftemperaturen und es 
wurden nur Zeiträume verwendet, in denen keine Warmwasser-
bereitung erfolgte (vgl. Kapitel 2.1). Die Abweichungen von  
Simulation und Referenzmessdaten sind das Ergebnis der Vali-
dierung und können Tabelle 1 entnommen werden. Sie wurden 
als angemessen für die Fragestellung erachtet. 

HAST Sekundärseite Gesamtmodell

Mittlerer absoluter 
Fehler (MAE) 0,41 K 0,87 K 0,84 K

Mittlerer relativer  
Fehler (MAPE) 0,13 % 0,28 % 0,27 %

Tabelle 1: Ergebnis der Modellvalidierung

Das Modell wurde anschließend genutzt, um den Trainingsda-
tensatz für die maschinellen Lernverfahren zu generieren. Dafür 
wurden Simulationen für unterschiedliche Parameter der Heiz-
kurve des Reglers durchgeführt und es wurde der Einfluss auf 
die Netzrücklauftemperaturen betrachtet (vgl. Abbildung 9). Die 
Parameter „Steigung“ (m) und „Niveau“ wurden über ihre maxi-
malen sinnvollen Wertebereiche variiert und damit insgesamt 
240 Simulationsdurchläufe durchgeführt. Die Ergebnisse zeigen, 
dass bei der Einstellung m = 0,6 und Niveau = 0 eine Absenkung 
der Rücklauftemperatur von durchschnittlich 0,9 K in der kältes-
ten Periode des Messzeitraums möglich ist, ohne dass die über-
tragene Wärmeleistung reduziert wird. Über den gesamten Zeit-
raum liegt die durchschnittliche Absenkung in der Simulation 

bei 0,46 K. Ein beispielhafter Vergleich der simulierten Rücklauf-
temperaturen mit originalen und optimierten Reglereinstellun-
gen ist in Abbildung 4 dargestellt.

▶  Es wurde ein digitaler Zwilling von Hausstation und Ge-
bäude erstellt und mit Wintermessdaten kalibriert; die Vali-
dierung ergab durchschnittlich 1 K Abweichung. Auf dieser 
Basis ließen sich 240 Heizkurvenvarianten in kurzer Zeit virtu-
ell durchspielen. Die Ergebnisse ersetzten teure Vor-Ort-Tests 
und lieferten einen belastbaren Datensatz für das spätere  
ML-Training. Dadurch entstand die Grundlage für alle weiteren 
Schritte der Optimierung.
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2.3  Erstellung der ML-Modelle und ihr Training
Im Rahmen des Projekts wurde ein datengetriebenes Surrogate-
Modell entwickelt, das die Rücklauftemperatur der HAST in  
Abhängigkeit von externen Einflussgrößen und regelbaren  
Parametern vorhersagen kann. Das Modell soll die aufwendige 
physikalische Simulation (siehe Kapitel 2.2) der HAST ersetzen 
und die Bestimmung der Rücklauftemperatur in Abhängigkeit 
von den Reglerparametern deutlich beschleunigen. Somit ist es 
möglich, die Reglerparameter mit geringem Aufwand und auto-
matisiert anzupassen. 

Die im Vorhaben gewählte Modellarchitektur basiert auf  
einem 1D-Convolutional Neural Network (1D-CNN). Obwohl 
CNNs ursprünglich für die Verarbeitung von Bilddaten ent
wickelt wurden, haben sie sich in den letzten Jahren auch in  
der Analyse von Zeitreihendaten als äußerst leistungsfähig er-
wiesen (LeCun et al. 1998 & Zheng et al. 2014). Im Vergleich zu 
alternativen Architekturen wie Multilayer Perceptrons (MLPs) 
oder Long Short-Term Memory Networks (LSTMs) zeigte das 
1D-CNN eine bessere Generalisierungsleistung bei gleichzeitig 
stabilerem Training. Die Architektur erlaubt es, lokale zeitliche 
Muster in der Eingangszeitreihe effizient zu erfassen. Dabei  
benötigt das Modell im Vergleich zu LSTMs deutlich weniger 
Rechenzeit, da es keine rekursiven Strukturen enthält. Das  
1D-CNN analysiert zeitliche Eingangsreihen, indem es soge-
nannte Filter über die Zeitachse gleiten lässt und dabei lokale 
Muster wie Anstiege, Abfälle oder Periodizität erkennt. Dadurch 
kann das Modell wichtige Muster aus der Abfolge der Eingangs-
größen extrahieren, die für die Vorhersage der Rücklauftempe-
ratur relevant sind, beispielsweise typische Reaktionsmuster 
auf bestimmte Wetterlagen oder Änderungen der Reglerpara-
meter. Die Trainings- und Optimierungs-Pipeline wird unter  
https://github.com/AEFDI/ML4FW/tree/main/Regleroptimierung 
veröffentlicht. 

Erstellung der Trainingsdatensätze
Das Training der ML-Modelle basierte auf einer Datengrundlage, 
die aus den Simulationen der HAST generiert wurde. Dabei wur-
den verschiedene Reglerparametereinstellungen systematisch 
variiert, um ein möglichst breites Spektrum möglicher Betriebs-
zustände abzubilden. Insgesamt standen für das Training knapp 
400.000 Datenpunkte sowie jeweils ca. 130.000 Datenpunkte für 
Validierung und Test zur Verfügung. Die Größe des Datensatzes 
hängt mit den in Kapitel 2.1 genannten Herausforderungen zu-
sammen. Am Ende stand daher nur der Zeitraum vom 06.12.2024 
bis 13.01.2025 als konsistente und nutzbare Trainingsgrundlage 
zur Verfügung.

Aus diesem Zeitraum wurden alle verfügbaren Zeitschritte mit 
Zusatzinformationen wie Tageszeit und Wochentag versehen. 
Sie wurden mittels Sinus- und Kosinus-Transformationen („Time 

Embeddings“) kontinuierlich codiert. Zusätzlich wurden pro 
Zeitstempel sämtliche simulierten Kombinationen der Reglerpa-
rameter (z. B. Vorlauftemperaturbegrenzung, Rücklaufvorgabe) 
mit Umgebungsgrößen wie Außentemperatur und Wärmeanfor-
derung kombiniert. Der finale Datensatz bildet somit für jeden 
Zeitpunkt eine vollständige Matrix aller simulierten Reglerein-
stellungen ab und ermöglicht die Bewertung ihrer Wirkung unter 
identischen äußeren Bedingungen. Um eine saubere Evaluie-
rung zu ermöglichen, wurde beim Split in Trainings-, Validie-
rungs- und Testdaten besonders darauf geachtet, dass keine 
zeitlichen Vorgriffe stattfanden (das heißt, der Testdatensatz 
enthielt keine „Zukunftsdaten“ aus Sicht des Trainings). Gleich-
zeitig war es notwendig, dass sowohl sehr kalte als auch ver-
gleichsweise warme Tage in allen Teilmengen vertreten waren, 
um die Generalisierbarkeit des Modells zu sichern.

Evaluation des ML-Modells
Die Evaluation des Modells erfolgte anhand etablierter Regres-
sionsmetriken (u. a. Mean Squared Error (MSE) und Mean Ab­
solute Error (MAE)) sowie durch eine visuelle Überprüfung der 
plausiblen Systemantworten. Wie in Abbildung 5 zu sehen ist, 
konnte eine mittlere Abweichung der Rücklauftemperatur von 
rund 1 K erzielt werden. Auch wenn sich aufgrund der einge-
schränkten Datenlage trotz Finetuning keine weitere Reduktion 
des Fehlers erzielen ließ, ergibt sich bei qualitativer Betrach-
tung ein plausibler zeitlicher Verlauf der Vorhersagen.

Methodik und Ergebnisse 
Da die verfügbare Datenbasis für eine robuste Anwendung von 
Reinforcement Learning (wie zunächst geplant) nicht ausreichte, 
wurde alternativ ein zweistufiger Ansatz aus 1D-CNN und gradi-
entenbasierter Optimierung gewählt. Reinforcement Learning 
ist im Vergleich zu anderen Machine-Learning-Verfahren beson-
ders datenintensiv, da es viele Iterationen in einer explorativen 
Umgebung benötigt, um durch Rückmeldung in Form von Be-
lohnungssignalen ein effektives Steuerungsverhalten zu erlernen. 
In unserem Fall standen jedoch nicht genügend unterschiedliche 
Datenpunkte zur Verfügung, um diesen Lernprozess sinnvoll zu 
unterstützen.

Daher wurde ein kombinierter Ansatz aus Surrogate-Modell und 
anschließender Optimierung gewählt. Dabei dient das trainierte 
Surrogate-Modell als differenzierbares Abbild der physikalischen 
Simulation. Auf dessen Basis können die optimalen Reglerpara-
meter zur Minimierung der Rücklauftemperatur gesucht werden. 
Die gradientenbasierte Optimierung erfolgt, indem die Rücklauf-
temperatur als Zielfunktion formuliert wird, deren Gradienten 
bezüglich der Reglerparameter numerisch bestimmt werden. 
Auf Grundlage dieser Gradienten wird iterativ in Richtung des 
steilsten Abstiegs optimiert, bis ein lokales Minimum erreicht ist.
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Zur Validierung der Optimierung wurde ergänzend ein Grid-
Search durchgeführt, um das Ergebnis der Gradientenmethode 
abzusichern. Der betrachtete Suchraum umfasste:

	■ Steigung2 : 0,5 bis 2,0 (in Schritten von 0,1)
	■ Niveau: 0,0 bis 7,0 (in Schritten von 0,5)

Die besten Ergebnisse hinsichtlich einer minimalen Rücklauf-
temperatur ergaben sich konsistent bei einer Steigung von 0,5 
bis 0,7 und einem Niveau von 0,5.

Diese Werte decken sich mit den Tendenzen aus den physikali-
schen Simulationen und bestätigen somit die Qualität des da-
tengetriebenen Modells (vgl. Abbildung 5).

Trotz der vergleichsweise geringen Menge an Trainingsdaten 
konnte ein Modell entwickelt werden, das unter den gegebenen 
Randbedingungen realistische Vorhersagen liefert. Eine Genera-
lisierung auf andere Witterungsverhältnisse oder Gebäudetypen 
ist jedoch nur eingeschränkt möglich. Die Prognosen sind daher 
mit einer gewissen Unsicherheit behaftet und bedürfen einer 
weitergehenden Validierung an realen Systemen.

Abbildung 5: Vorhersagen des CNN auf dem Testdatensatz 
Links: Boxplot der absoluten Fehler gemittelt über alle Zeitpunkte des Testdatensatzes, der dem Modell vollständig unbekannt ist. 
Rechts: Tatsächliche Rücklauftemperatur vs. Vorhersage des Modells für eine Zeitreihe über ca. 3 Tage. In Violett ist die tatsächlich simulierte Rücklauftemperatur und in Türkis die  
Vorhersage des Modells zu sehen. Das Modell kann den Verlauf robust abbilden, stärkere Spitzen und Schwankungen werden zugunsten des mittleren Fehlers geglättet.

2	� Zur Erläuterung von „Steigung“ und „Niveau“ siehe Abbildung 9
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Kontinuierliche Anpassung der Modelle durch  
ML-Ops Pipeline
Die ML-Ops Pipeline bildet die Grundlage für das wiederholte 
Training der ML-Modelle, was eine kontinuierliche Anpassung 
und Verbesserung der Modelle ermöglicht.

Im Datastore werden die Daten aus den Liegenschaften (vgl. Ka-
pitel 2.1) zusammen mit den Daten, die als Ergebnisse aus der 
Simulation der HAST entstehen (vgl. Kapitel 2.2), gespeichert. 
Die Kommunikation mit dem Datastore erfolgt über eine REST-
Schnittstelle. Die Authentifizierung für die Schnittstelle erfolgt 
über einen zentralen Single-Sign-on-Server (SSO) und nutzt das 
OAuth2-Protokoll. Lese- und Schreibberechtigungen können für 
die Kombination von einzelnen Nutzern oder Nutzergruppen 
und Buckets unterschiedlich gesetzt werden. Dadurch kann der 
Schutz von sensiblen Daten gewährleistet werden. 

Die Daten können in einem beliebigen Dateiformat hochgeladen 
und gespeichert werden. Zusätzlich werden Metadaten zu den 
gespeicherten Daten hinzugefügt, um den weiterverarbeitenden 
Systemen, wie zum Beispiel dem ML-Trainingsmodul, eine Mög-
lichkeit zu geben, die gespeicherten Daten zu filtern und für den 
jeweiligen Use Case passend abzurufen.

Ändert sich die Datenlage, sendet das ML-Trainingsmodul eine 
Anfrage an den Datastore, um die neuesten Daten zu erhalten. 
So können der Abstimmungsbedarf und manuelle Arbeitsschrit-
te für wiederholte Trainingsläufe minimiert werden.   

Der Datastore, der SSO-Server und die REST-Schnittstelle wer-
den als containerisierte Services in einer Kubernetes-Infrastruk-
tur betrieben. Diese Architektur bietet entscheidende Vorteile: 
Kubernetes verteilt die Container automatisch auf verfügbare 
Knoten und sorgt so für eine hohe Ausfallsicherheit; bei Lastspit-
zen kann es zusätzliche Instanzen starten und bei sinkender Last 
wieder abschalten, was Ressourcen spart. Rolling Updates und 
Rollbacks ermöglichen es, neue Versionen ohne Unterbrechung 
einzuspielen und bei Bedarf schnell zurückzusetzen. Zudem ver-
einfacht die einheitliche Orchestrierung das automatisierte De-
ployment, wodurch Änderungen schneller und kontrollierter in 
die Produktion gelangen können. Insgesamt erhöht Kubernetes 
damit die Skalierbarkeit, Verfügbarkeit und Wartbarkeit der ge-
nannten Komponenten.

▶  Aus den Simulationen entstand ein schlankes 1D-CNN-
Surrogat, das Rücklauftemperaturen in Sekunden statt  
Stunden prognostiziert. Mit rund 1 K Vorhersagefehler bildet 
es das physikalische System hinreichend genau ab. Eine  
anschließende gradientenbasierte Suche bestimmt auto
matisch jene Heizkurvenparameter, die die Rücklauftem­
peratur minimieren. So wird aus vielen Simulationen ein 
handhabbares Optimierungswerkzeug. Das Ergebnis sind 
praxistaugliche Reglerwerte auf Knopfdruck.

2.4  Beschreibung der Umsetzungsgebäude für 
den Feldtest
Bei den für das Vorhaben gewählten Umsetzungsgebäuden der 
Neuwoba handelt es sich um typische WBS-70-Plattenbauten 
der DDR mit den Baujahren von 1979 bis 1985. Die Gebäude wer-
den ausschließlich mit Fernwärme von den Neubrandenburger 
Stadtwerken versorgt.

Abbildung 6: Beispielgebäude in der Petrosawodsker Straße 66-72, Neubrandenburg

Die Datenerfassung und im Besonderen die Erstellung der ML-
Modelle haben sich auf eines der Umsetzungsgebäude in der Pe-
trosawodsker Straße 66-72 fokussiert. Das Gebäude wurde 1974 
errichtet und ist eine WBS 70 C1-Variante. Das Gebäude hat eine 
Wohnfläche von 2.517 m² und umfasst 40 3-Raum-Wohnungen, 
die sich auf 5 Geschosse und 4 Hausaufgänge verteilen.

1996 erfolgte eine umfassende Modernisierung. Elektro- und  
Sanitärinstallation sowie die Heizungen in den Wohnungen, 
Hausstation, Fenster, Kellerdeckendämmung, Wohnungsein-
gangstüren und Drempeldämmung wurden erneuert. Das 
1-Rohr-System blieb erhalten. 

Um die Verbräuche des Wohnungsbestands zu reduzieren, wer-
den jedes Jahr die alten 1-Rohr-Systeme gegen moderne 2-Rohr-
Systeme ausgetauscht. Nachweislich wird der Gesamtverbrauch 
zwischen 20 und 30 Prozent reduziert (siehe Baugenossenschaft 
Wiederaufbau 2025). Im Jahr 2023 wurde in der Petrosawodsker 
Straße 66-72 das 1-Rohr-System zu einem 2-Rohr-System umge-
rüstet und die Haustation erneuert.  
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Die Heizungsvorlauftemperaturen konnten von 90 °C auf 55 °C 
bei Auslegungstemperatur gesenkt werden und das Gebäude  
ist auf der Heizungsseite Niedertemperatur-ready und für alter-
native Wärmeerzeuger wie Wärmepumpen geeignet. Es wurden  
120 Heizkörper der Marke Buderus Logatrend C-Profil installiert 
und die 24 Stränge wurden erneuert. 

Die Umsetzungsgebäude verfügen alle über einen Regler der  
Firma SAMSON und wurden als Pilot im Jahr 2022 mit einem 
Gateway ausgestattet, sodass ein digitaler Zwilling auf der  
SAMSON-Plattform SAM DISTRICT ENERGY aufgeschaltet  
werden konnte.
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Abbildung 7: Schaltbild der Hausstation des Beispielgebäudes in SAM DISTRICT ENERGY

Abbildung 8: Regler TROVIS 5578 der Firma SAMSON

Die Gebäude haben jeweils 1 bis 2 Heizkreise sowie einen Trink-
wasserspeicher. Die Heizung ist jeweils als Steigungskennlinie 
konfiguriert – hierdurch wird bei höherer Außentemperatur dem 
Gebäude weniger Wärme zur Verfügung gestellt (vergl. Abb. 9). 

In den Beispielgebäuden sind SAMSON TROVIS Heizungs- und 
Fernheizungsregler der 5500-Serie verbaut. Hier werden unter-
schiedliche Typen eingesetzt, jedoch basieren alle auf derselben 
Plattform. In den Beispielgebäuden und so auch in der Petrosa-
wodsker Straße 66-72 ist hauptsächlich der Typ 5578 installiert.

Diese Regler verwenden standardmäßig eine witterungsgeführte 
Regelung. Dabei misst ein Außentemperatursensor die aktuelle 
Temperatur und ermittelt über eine eingestellte Kennlinie die 
entsprechende Vorlaufsolltemperatur, die der Regler dann für 
den entsprechenden Heizkreis ausregelt. Die Wahl der Kennlinie 
ist unter anderem abhängig von der gewünschten Raumtempe-
ratur, der Heizungsart (Fußbodenheizung oder Radiator) und 
dem Gebäude selbst (Altbau, gedämmt etc.). Die Vorlauftempe-
ratur wird nach folgender Gleichung berechnet: 

In diesem Vorhaben wird die Heizkennlinie für die witterungsge-
führte Regelung verwendet. Als Parameter dieser Kennlinie die-
nen:

	■ Raumsollwert Tag bzw. Nacht
	■ Steigung
	■ Niveau

Der „Raumsollwert Tag/Nacht“ ist auf Endkundenebene um  
die gefühlte Raumtemperatur anzuheben oder zu senken. Bei 
dem Standard-Raumsollwert von 20 °C gilt die Kennlinie 1:1. 
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Dieser Wert ist nicht Gegenstand der Parameteranpassung, da 
der Fokus auf der Optimierung der Parameter auf der Anlagen-
seite bei konstanten Bedingungen auf der Endkundenebene 
liegt. Der Verlauf der Kennlinie wird im Wesentlichen durch den 
Parameter „Steigung“ beschrieben. Mit dem Parameter „Niveau“ 
kann eine Parallelverschiebung der Kennlinie durchgeführt wer-
den. Diese beiden Parameter beschreiben das anlagentechni-
sche Verhalten der Hausstationen und werden in diesem Vorha-
ben durch die ML-Modelle angepasst. Sie sind Gegenstand des 
Auto- und Continuous-Commissioning in diesem Vorhaben. 

▶   Der Praxistest wurde in einem modernisierten WBS-
70-Mehrfamilienhaus mit 40 Wohneinheiten umgesetzt. Nach 
der Umrüstung auf ein 2-Rohr-System und der Installation ei-
nes SAMSON-Reglers samt Gateway wurde das Gebäude voll-
ständig digital erfasst. Alle Mess-, Regel- und Verbrauchsda-
ten fließen minütlich in die Plattform SAM DISTRICT ENERGY. 
Dadurch konnten Simulation, Modelltraining und Live-Moni-
toring nahtlos ineinandergreifen. Das Objekt dient nun als re-
aler Demonstrator für das ML-gestützte Auto-Commissioning.
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Abbildung 9: Steigungskennlinie des Reglers der Firma SAMSON entsprechend der Reglergleichung. Die Einstellungen vor und nach der Optimierung sind hervorgehoben.

2.5  Ergebnisse aus dem Feldtest
Der Feldtest wurde mit optimierten Reglerparametern an der 
Liegenschaft Petrosawodsker Straße 66-72 in zwei Perioden 
durchgeführt: vom 28.03. bis 14.04.2025 (Zeitraum 2, Frühjahr) 
sowie vom 25.11. bis 14.12.2025 (Zeitraum 3, Winter). Die für 
die Vergleiche notwendige Messperiode mit nicht optimierten 
Parametern der Regler (Zeitraum 1, Referenz) lag im Zeitraum 
06.12.2024 bis 13.01.2025. Diese Messdaten wurden ebenfalls 
für das Modelltraining verwendet (vgl. Kapitel 2.1 und 2.3).

Für die Auswertung des Feldtests und zur Bewertung der Wirk-
samkeit der optimierten Reglerparameter wurden vier Leitfragen 
formuliert:

1.	 �Reduktion der Rücklauftemperatur: Wurde für vergleichbare 
Betriebszustände die Rücklauftemperatur gesenkt?

2.	 �Versorgungssicherheit: Wurde der Versorgungsauftrag  
erfüllt – wurde es im betrachteten Gebäude überall aus
reichend warm?

3.	 �Energieeffizienz: Wurde unter vergleichbaren Bedingungen 
weniger Wärme zugeführt?

4.	� Reduktion von Lastspitzen: Konnten durch die neue Einstel-
lung kurzfristige Leistungs-spitzen im Wärmebezug verringert 
werden?

Methodik der Datenauswertung 
Zur Beantwortung der Fragestellungen wurde eine zweistufige 
Analysestrategie verfolgt:

1. Exemplarischer Tagesvergleich (witterungsbasiert)
Für einen detaillierten Vergleich wurden Vergleichstage mit ähn
licher Witterung aus allen drei Zeiträumen ausgewählt, da auf 
Grund der Datenlage nicht alle Einflussfaktoren außerhalb der 
Witterung, die ebenfalls einen großen Einfluss auf den Wärmebe-
darf haben können, berücksichtigt werden können. Das Vorgehen 
zur Auswahl basierte auf einem mehrstufigen Filterprozess:
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1.	� Berechnung der Tagesmitteltemperatur (Kriterium 1). Für 
alle in der Datenbank verfügbaren Tage wurde zunächst die 
mittlere Außentemperatur berechnet. Diese diente als 
Grundlage für die Beurteilung der Witterungslage.

2.�	� Für die Tage im Zeitraum 1 wurden in den Optimierungs-
zeiträumen (Zeitraum 2 und 3) die Tage mit der ähnlichsten 
Tagesmitteltemperatur ausgewählt. Maßgeblich war das 
kleinste ΔT, wobei ΔT die Abweichung der Tagesmitteltem-
peraturen beschreibt. Dies ermöglicht eine hohe Vergleich-
barkeit mit typischen Wintertagen 

Kriterium 2: Prüfung der maximalen Tagesverlaufsdifferenz: 
Um zusätzlich sicherzustellen, dass sich nicht nur das Tages-
mittel, sondern auch der Temperaturverlauf (z. B. tageszeit
liche Schwankungen) ähnelt, wurde die maximale ∆T im Tages-
verlauf als zweites Kriterium betrachtet. Nur Vergleichspaare 
mit geringer Differenz im Temperaturverlauf wurden ausge-
wählt. Das finale Ziel war es, Vergleichstage mit möglichst  
ähnlicher Außentemperatur und einem ähnlichen Verlauf der 
Außentemperatur zu identifizieren, um vergleichbare Betriebs-
modi analysieren zu können und die Veränderungen im System-
verhalten (primäre Rücklauftemperatur bzw. Leistungsaufnahme) 
qualitativ und quantitativ bewerten zu können.

Zeitraum Datum Tagesmittel Außentemperatur / 
ΔT im Tagesmittel

Maximales ΔT 
 im Tagesverlauf 

Zeitraum 1 (Referenz) 15.12.2024 (Sonntag) 5,5°C / - -

Zeitraum 2 (Frühjahr, optimiert) 30.03.2025 (Sonntag) 5,6°C / ΔT 0,1 K 3,5 K

Zeitraum 3 (Winter, optimiert) 28.11.2025 (Freitag) 5,3°C/ ΔT 0,2 K 3,5 K

Tabelle 2: Kriterien der ausgewählten Vergleichstage

2. Gesamtheitliche Analyse über die vollständigen Zeiträume
Ergänzend zum exemplarischen Tagesvergleich wurde eine sta-
tistische Analyse über die gesamten Messzeiträume durchge-
führt, um die Robustheit der Ergebnisse über verschiedene Wit-
terungsbedingungen hinweg zu überprüfen. Hierzu wurden für 
alle verfügbaren Tage Tagesmittelwerte der Außentemperatur 
sowie der primären Rücklauftemperaturen berechnet.

Die Analyse erfolgte mittels Streudiagrammen (Außentempera-
tur vs. Rücklauftemperatur) mit robusten Regressionsgeraden 
(Huber-Regression), die unempfindlich gegenüber Ausreißern 
ist. Dabei wurden folgende Vergleiche durchgeführt:

	■ Zeitraum 1 (Referenz, nicht optimiert): Separate Regressi-
onsgerade für den Referenzzeitraum

	■ Zeiträume 2 und 3 (optimiert, kombiniert): Gemeinsame  
Regressionsgerade für beide optimierten Zeiträume (Früh-
jahr und Winter)

Durch den Vergleich der Regressionsgeraden lässt sich die 
durchschnittliche Absenkung der Rücklauftemperatur über den 
gesamten Außentemperaturbereich quantifizieren. Die Kombi-
nation von Zeitraum 2 und 3 in einer gemeinsamen Regression 
ermöglicht dabei eine robustere Bewertung der Optimierungs
effekte unabhängig von saisonalen Einflüssen.

Im Folgenden werden die Ergebnisse aus beiden Analysemetho-
den dargestellt und diskutiert. Ziel ist es, die Auswirkungen der 
Regleroptimierung sowohl auf Tagesvergleich als auch im 
Durchschnitt sichtbar zu machen und die Wirksamkeit umfas-
send zu bewerten.

Exemplarischer Tagesvergleich (Analysemethode 1):
Zur Bewertung der Effekte der durchgeführten Optimierung 
wurden für die definierten Vergleichstage folgende Auswertun-
gen durchgeführt:

	■ Tagesverlaufsdiagramme: Visualisierung des zeitlichen Ver-
laufs von: Außentemperatur, Primärseitiger Vorlauf- und 
Rücklauftemperatur, übertragene Wärmeleistung

	■ Histogramme der Rücklauftemperaturen: Analyse der Vertei-
lung der Rücklauftemperaturen über den Tagesverlauf zur 
Bewertung typischer Temperaturniveaus

	■ Kumulierte Wärmemenge je Tag: Gegenüberstellung der  
täglich zugeführten Wärmemenge für die Raumheizung  
zur möglichen Beurteilung von Energieeinsparungen durch  
Reduktion des Spielraums bei der Heizungsnutzung und  
bei vergleichbarer Witterung.
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Im Folgenden werden die Vergleichstage anhand der beschrie-
benen Diagrammtypen dargestellt und analysiert. Ziel ist es, die 
Auswirkungen der Maßnahmen auf Rücklauftemperaturen, Wär-
meleistung und Energieverbrauch unter vergleichbaren Witte-
rungsbedingungen sichtbar zu machen. 

Aufgrund der sehr eingeschränkten Datenlage stellen die in 
diesem Kapitel gezogenen Schlussfolgerungen aus den Analy-
sen und Vergleichen zwischen den gewählten Vergleichstagen 
nur eine erste Indikation für die Wirkung der Optimierung dar. 
Da es sich ausschließlich um Einzelfallbetrachtungen handelt, 
ist für eine statistisch valide Aussage ein längerfristiger Ver-
gleich erforderlich. Die im Folgenden genannten Werte ha-
ben somit aufgrund der eingeschränkten Datenlage für den 
Vergleich nur eine sehr bedingte Aussagekraft, die Ergebnisse 
lassen sich so nicht ohne Weiteres ursächlich auf die durch-
geführte Optimierung an der HAST zurückführen.
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Abbildung 10: Außenlufttemperaturen, 15.12.2024, 30.03.2025 und 28.11.2025

Die Außentemperaturen für die Vergleichstage 15.12.2024, 
30.03.2025 und 28.11.2025 sind ähnlich (siehe Tabelle 2), wie in 
der Abbildung oben jedoch zu sehen, schwankt die Außentem-
peratur an diesem Tag im März mehr als im Dezember oder No-
vember. 
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Abbildung 11: Außenlufttemperaturen 15.12.2024, 30.03.2025 und 28.11.2025 und der zwei vorherigen Tage

Ähnlich wie in Abbildung 10 zeigt auch Abbildung 11 eine größe-
re Schwankung der Außentemperaturen im März im Vergleich 
zum Dezember oder November. Auch sind die Tage vor den 

gewählten Vergleichstagen im März deutlich wärmer, was vor al-
lem im Hinblick auf die abgenommene Wärmemenge bei der In-
terpretation der Ergebnisse zu berücksichtigen ist. 
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Abbildung 12: Primäre Rücklauftemperaturen Petrosawodsker Straße 66-72  15.12.2024, 30.03.2025 und 28.11.2025

Die obige Abbildung zeigt die primärseitigen Rücklauftempera-
turen für die gewählten Vergleichstage  von der Liegenschaft 
Petrosawodsker Straße 66-72 (mit optimierten Reglerparame-
tern im März und November), als auch die Rücklauftemperatu-
ren mit den ursprünglichen Reglerparametern (Dezember). An 

den Verläufen lässt sich erkennen, dass es zu einer Rücklauf-
temperaturabsenkung in der Petrosawodsker Straße 66-72 
nach der Optimierung der Parameter kam. Dies wird im folgen-
den Histogramm noch einmal deutlicher dargestellt.
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Abbildung 13: Histogramm der Rücklauftemperaturabsenkung (primär) Petrosawodsker Straße 66-72 15.12.2024 im Vergleich zu 30.03.2025 und 28.11.2025

Das Histogramm zeigt eine Absenkung der Rücklauftemperatu-
ren für die Liegenschaft Petrosawodsker Straße 66-72 für die 
Vergleichstage. Für diesen Fall bedeutet dies, dass die 

Optimierung der Reglerparameter einen positiven Einfluss auf 
die Rücklauftemperatur hat. 
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Abbildung 14: Leistungsabnahme im Tagesverlauf Petrosawodsker Straße 66-72, 30.03.2025 und 28.11.2025

Die obige Abbildung zeigt den zeitlichen Verlauf der Wärmeleis-
tungsaufnahme der Liegenschaft Petrosawodsker Straße 66-72 
für die Vergleichstage. Ob die Unterschiede in den Kurven auf 

die Optimierungsmaßnahmen der HAST zurückzuführen sind, 
lässt sich anhand der Datenlage nicht vollständig belegen. 
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Abbildung 15: kumulierte Wärmemenge Petrosawodsker Straße 66-72, 15.12.2024, 30.03.2025 und 28.11.2025

Die obige Abbildung zeigt die kumulierten Wärmemengen der 
Liegenschaft Petrosawodsker Straße 66-72 für die Vergleichstage. 
Wie zu erkennen, ist die übertragene Wärmemenge am 
30.03.2025 mit 830 kWh und am 28.11.2025 mit 1075 kWh  
geringer als am 15.12.2024, wo 1173 kWh übertragen wurden. 
Die an den Vergleichstagen ähnlichen Umgebungstemperatu-
ren sollten dazu führen, dass die benötigte Wärmemenge zum 
Heizen des Gebäudes nahezu identisch ist, unabhängig von der 
Optimierung der HAST. Die Unterschiedlichen Wärmemengen 
deuten deshalb eher darauf hin, dass sich das Nutzerverhalten 
verändert hat (weniger Warmwasserbedarf, niedrigere Einstel-
lung der Heizkörper, etc.) oder durch die Optimierung verändert 
wurde (Deckelung der max. Heizleistung vermeidet ggf. unab-
sichtliche Überheizung der Räume). Rein rechnerisch kann eine 
Minderverbrauch von 343 kWh oder 29 %, beziehungsweise  
98 kWh oder 8,4 % dargestellt werden (siehe Tabelle 3). Diese 
Werte haben jedoch auf Grund der geringen Datenlage nur eine 
bedingte Aussagekraft (siehe oben). Die Situationen im Dezem-
ber und März, beziehungsweise November, weichen schon bei 
den Außentemperaturverläufen ab, Aussagen zu weiteren 

wichtigen Werten, wie der Solarstrahlung, Gebäudenutzung etc. 
können wegen der fehlenden Daten nicht getroffen werden. Da-
mit kann nur von einer Indikation, die auf mögliche Energieein-
sparungen von ungefähr 8-9 % hinweist, gesprochen werden, 
deren Ursachen allerdings nicht aus den zur Verfügung stehen-
den Daten spezifiziert werden können. Um gesicherte Aussagen 
zu einer möglichen Energieeinsparung durch die Optimierung 
der Reglerparameter zu treffen, ist eine bessere Datenbasis 
durch längerfristige Messungen nötig. 

Datum Rechnerischer Gesamt
verbrauch am Tag [kWh]

15.12.2024 (Sonntag) 1.173

30.03.2025 (Sonntag) 830

28.11.2025 (Freitag) 1.075

Tabelle 3: Rechnerische Energieeinsparung Petrosawodsker Straße 66-72, für die spezifi-
schen Situationen an den Tagen 15.12.2024 gegenüber 30.03.2025 und 28.11.2025
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Zeitraum 1 (Dezember 2024 – Januar 2025)

Huber Z1 (Primär): y = -0.556x + 37.27

Huber Z2 + Z3 (Primär): y = -0.436x + 34.57

Zeitraum 2 (März 2025)

Zeitraum 3 (November – Dezember 2025)
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Abbildung 16: Streudiagramm der Tagesmittelwerte der Außentemperatur (x-Achse) und der primären Rücklauftemperatur (y-Achse) der Zeiträume 1-3 der Petrosawodsker Straße 66-72 
inkl. Regressionsgeraden

Gesamtheitliche Analyse:
Zur Bewertung der Effekte der durchgeführten Optimierung 
wurden folgende Auswertungen durchgeführt.

	■ Streudiagramm mit Regressionsgeraden: Darstellung der Ta-
gesmittelwerte (Außentemperatur vs. Rücklauftemperatur) 
mit robusten Huber-Regressionsgeraden der optimierten 
Liegenschaft Petrosawodsker Straße 66-72 anhand der Zeit-
räume 1-3 

	■ Statistische Kennwerte: Ermittlung von Steigung und Ach-
senabschnitt der Regressionsgeraden zur Charakterisierung 
des temperaturabhängigen Verhaltens

	■ Streudiagramm der anderen Liegenschaften zum Vergleich

Die Regressionsgerade im Streudiagramm der Liegenschaft Petro-
sawodsker Straße 66-72 für den Zeitraum 1 vor Optimierung und 
diejenige für die Zeiträume 2-3 nach der Optimierung zeigen 
eine fast parallele Verschiebung der Rücklauftemperaturen in 
Abhängigkeit der Außenlufttemperatur um etwa - 2 K (bei mittle-
rer Außentemperatur von 5°C beträgt ∆T -2,1 K).

Die ähnliche Steigung beider Geraden (Zeitraum 1: m = -0,56x, 
Zeitraum 2-3: m = - 0,44x) zeigt, dass die Temperaturabhängig-
keit des Systems unverändert bleibt. Die Optimierung hat das 

hydraulische Verhalten nicht beeinträchtigt, sondern lediglich 
das Temperaturniveau systematisch abgesenkt.

Die nahezu parallele Verschiebung bedeutet, dass die Rücklauf-
temperaturabsenkung über den gesamten Temperaturbereich 
nahezu konstant ist. Dies zeigt die wetterunabhängige Wirkung 
der Regleroptimierung.

Die Kombination der Zeiträume 2 und 3 zeigt eine konsistente 
Datenlage ohne saisonale Abweichungen. 
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Abbildung 17: Streudiagramm der Tagesmittelwerte der Außentemperatur (x-Achse) und der primären Rücklauftemperatur (y-Achse) der Petrosawodsker Straße 42-48 (Frühjahr und Win-
ter), Petrosawodsker Straße 10-16 (Winter), Petrosawodsker Straße 18-24 (Winter)

Das Streudiagramm in Abbildung 17 zeigt die Tagesmittelwerte 
der Außentemperatur und der primären Rücklauftemperatur der 
Vergleichsliegenschaften Petrosawodsker Straße 10-16, 18-24 
und 42-48. Es ist ein grundsätzlich höheres Temperaturniveau im 
Vergleich zur optimierten Liegenschaft erkennbar. Dieses Niveau 
ist mindestens um 3 K erhöht. 

Analyse der Rücklauftemperaturen der Vergleichszeiträume

▶  Die Auswertung der Tagesverläufe der Rücklauftempera-
turen zeigt deutliche Unterschiede zwischen der Liegen-
schaft mit optimierten Reglerparameter und mit nicht opti-
mierten Reglerparametern. Bei der Liegenschaft mit 
optimierten Reglerparametern ist insbesondere tagsüber 
eine signifikante Absenkung der Rücklauftemperatur erkenn-
bar. Dies weist auf eine erfolgreiche hydraulische und rege-
lungstechnische Optimierung hin und kann somit als Proof-
of-Concept des hier getesteten Verfahrens gewertet werden. 

Ergebnisse der Datenanalyse
	■ Reduzierung der Rücklauftemperatur: Die Rücklauftempe-

ratur konnte im betrachteten Gebäude (Petrosawodsker 
Straße 66-72) um min. 2K gesenkt werden – im direkten 
Vergleich zur Referenz (Petrosawodsker Straße 42–48)  
sogar um 3 K. Dies deutet auf eine verbesserte Wärmeab
nahme und eine effizientere Systemnutzung hin.

	■ Energieeinsparung: Der Wärmebedarf an den Vergleichstagen 
ist rein rechnerisch um rund 29 %, beziehungsweise 8,4 % re-
duziert. Eine Rückführung dieses Effektes kann nur sehr be-
dingt oder teilweise auf die optimierten Reglereinstellungen 
zurückgeführt werden und kann nur mit einer breiteren Da-
tenbasis quantifiziert und belegt werden. Eine Absenkung 
des Wärmebedarfs von 8-9 % kann jedoch als realistisch ein-
geschätzt werden. Diese Reduktion würde sich auf die Heiz-
kosten auswirken (vergleiche Tabelle 7 im Anhang). Doch 
auf Grund der geringen Datenlage kann an dieser Stelle nur 
von einer Indikation gesprochen werden. Um Aussagen zu 

Petrosawodsker Straße 42-48 (28.03.-14.04.2025) Petrosawodsker Straße 10-16 (Nov.-Dez. 2025)

Petrosawodsker Straße 18-24 (Nov.-Dez. 2025)Petrosawodsker Straße 42-48 (Nov.-Dez. 2025)
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einer Energieeinsparung durch die Optimierung der Regler-
parameter treffen zu können, ist eine breitere Datenbasis 
nötig. 

	■ Leistungsvergleich zwischen den Vergleichsgebäuden nicht 
möglich: Ein direkter Vergleich der benötigten Heizleistung 
mit dem zweiten Gebäude war nicht möglich, da die Daten 
nicht vorhanden sind.

Die ausgewählten Vergleichstage sind in ihrer Witterung / der 
Außenlufttemperatur grundsätzlich vergleichbar. Es zeigt sich je-
doch, dass die Frühlingstage stärkere tageszeitliche Schwankun-
gen der Außentemperatur als die Tage im Winter aufweisen. Zu-
dem unterscheiden sich die Tage unmittelbar vor den gewählten 
Vergleichstagen im Frühling geringfügig von denen im Winter, 
was Einfluss auf das thermische Verhalten des Gebäudes haben 
kann (Wärmespeicherfähigkeit der Baukonstruktion). Eine um-
fassendere Bewertung war auf Grund der begrenzten Datenver-
fügbarkeit nicht möglich. Für eine robuste Bewertung ist es nö-
tig, in einer weiteren Winterperiode zusätzliche Vergleichsdaten 
zu erheben.

Zudem war eine vollständige Bewertung der Versorgungssicher-
heit nicht möglich, da keine Innenraumtemperaturen gemessen 
wurden. Es liegen keine objektiven Daten darüber vor, ob die ge-
wünschten Raumtemperaturen in allen Wohnungen erreicht 
wurden. Allerdings wurden in der ersten Testperiode (Frühjahr 
2025) keine Beschwerden von Nutzerinnen und Nutzer gemel-
det, in der zweiten Testperiode (Herbst 2025) kam es jedoch zu 
direkten Anmerkungen zur Heizleistung. Die Unterschiede im 
Wärmeverbrauch deuten dennoch darauf hin, dass sich das 
Heizverhalten der Nutzerinnen und Nutzer verändert haben 
könnte. Sollte dies nicht aktiv durch die Nutzenden beabsich-
tigt, sondern auf die optimierten Einstellungen an der HAST zu-
rückzuführen sein, wäre dies ein Indiz dafür, dass die Optimie-
rungen den Nutzerinnen und Nutzern helfen, unbeabsichtigt 
hohe Raumtemperaturen zu vermeiden Es wurde ergänzend 
eine Nutzerbefragung durchgeführt, deren Ergebnisse im Fol-
genden dargestellt werden.

Ergebnisse der Nutzerbefragung
Zur Bewertung der Versorgungssicherheit und Nutzerzufrieden-
heit wurde ergänzend eine Nutzerbefragung für den Zeitraum 
von Dezember 2024 bis April 2025 mittels Fragebogen durchge-
führt. Ziel war es, subjektive Rückmeldungen zur Raumtempera-
tur und zum Komfort während des Testzeitraums systematisch 
zu erfassen.

Die standardisierte Befragung diente dazu, subjektive Einschät-
zungen der Bewohnerinnen und Bewohner zu erfassen, um die-
se mit vorhandenen Verbrauchsdaten in Beziehung setzen zu 
können. Sie ergänzt somit die messtechnischen Erhebungen im 
Projekt durch eine nutzerzentrierte Perspektive.

Abgefragt wurden unter anderem:
	■ Haushaltsstruktur und typische Anwesenheitszeiten

	■ Subjektives Temperaturempfinden in verschiedenen Räu-
men (Wohn-, Schlaf-, Bade- und Arbeitszimmer) sowie an 
Kopf und Füßen

	■ Thermostateinstellungen in verschiedenen Nutzungssitua
tionen (tagsüber, nachts, bei Abwesenheit)

	■ Lüftungsverhalten (Dauer, Häufigkeit und Gründe)

	■ Zufriedenheit mit der Heizungsregelung

Diese Erhebung stellt eine erste qualitative Annäherung an das 
Komfortempfinden der Nutzenden dar. Leider gab es im Rah-
men der Untersuchungen nur zwei Antworten von Nutzerinnen 
und Nutzern, was die Aussagekraft der Befragung stark limitiert.  

Für die Auswertung stehen nur zwei ausgefüllte Fragebögen von 
jeweils einer Wohnung mit den Antworten der Nutzerinnen und 
Nutzer zur Verfügung.

Beide Wohnungen wurden durchgehend von zwei anwesenden 
Erwachsenen bewohnt. In beiden Fällen wurde das Raumklima 
sehr konstant und positiv bewertet, mit Temperaturwahrneh-
mung „genau richtig“ über den gesamten Erhebungszeitraum. 
Unterschiede zeigten sich in der Nutzung der Thermostatköpfe:

	■ Wohnung 1 passte im Frühjahr die Heizstufen leicht nach 
unten im Wohnzimmer und Arbeitszimmer an. Die anderen 
Räume sind unbeheizt (Thermostatkopf auf 0).

	■ Wohnung 2 ließ die Einstellungen unverändert und nutzte 
generell nur das Wohnzimmer als beheizten Raum (Stufe 2), 
alle anderen Räume blieben unbeheizt.

Auch beim Lüftungsverhalten war ein Unterschied sichtbar:

	■ Wohnung 1 lüftete im Frühjahr länger (30–60 Minuten),  
in der Heizperiode kürzer. Gelüftet wurde aufgrund ver-
brauchter Luft.

	■ Wohnung 2 zeigte durchgehend gleichmäßige Lüftungs­
zeiten (10–30 Minuten).

Beide Haushalte gaben an, nicht länger als zwei Tage abwesend 
gewesen zu sein, was die Validität der Angaben zur Nutzung und 
Temperaturwahrnehmung stützt.
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Fazit der Nutzerbefragung
Die stichprobenartige Nutzerbefragung in zwei dauerhaft be-
wohnten Wohnungen zeigt eine Indikation, dass die Bewohner 
mit der Heizungsregelung insgesamt zufrieden waren. In bei-
den Haushalten wurde das thermische Komfortempfinden 
durchgängig als „genau richtig“ beschrieben, sowohl in der 
Hauptheizperiode (Dezember bis Februar) als auch im Über-
gangszeitraum (März bis April). Zu kühle Temperaturen wurden 
nicht angegeben.

Die Ergebnisse der Nutzerbefragung im Frühling 2025 relativieren 
sich durch Rückmeldungen einiger weniger NutzerInnen während 
der Testperiode Herbst 2025. Nach der Wiederaufnahme des Heiz-
betriebes im Herbst 2025 gab es einige wenige Rückmeldungen, 
dass es an sehr kühlen Tagen nicht ausreichend warm werden 
würde. Eine Analyse ergab, dass eine genauere Analyse der Hyd-
raulik im Gebäude notwendig ist, um das Problem näher zu iden-
tifizieren. Alternativ kann eine etwas erhöhte Heizkurve einge-
stellt werden (Steigung auf 0,7). Mit diesem Sicherheitsaufschlag 
wird der Effekt der nicht optimierten Hydraulik im Gebäude aus-
geglichen.

Somit gibt es zusammenfassend eine Indikation, dass das Ge-
bäude – auch nach der Anpassung der Heizkurve – ausreichend 
mit Wärme versorgt wurde, um den Bedarf der Nutzer zu de-
cken. Trotz der tendenziell höheren Außentemperaturen im 
Frühjahr und des damit verbundenen geringeren Heizbedarfs 
stimmten die subjektiv empfundenen Raumtemperaturen wei-
terhin mit den Nutzerbedürfnissen überein.

Die Rückmeldungen geben somit eine gewisse positive Indikati-
on, dass die vorgenommenen Optimierungen am Heizsystem – 
insbesondere die Anpassung der Heizkurve – wirksam und weit-
gehend bedarfsgerecht waren.

▶   Im Testzeitraum 28.03. bis 14.04.2025, sowie 25.11. bis 
14.12.2025 sank die primärseitige Rücklauftemperatur um 
min 2 K; im direkten Vergleich mit einem baugleichen Refe-
renzgebäude waren es sogar rund 3 K. Erste Abschätzungen 
deuten auf ein mögliches Wärmeeinsparpotenzial von 8-9 %  
hin. Trotz der Anpassungen blieb der thermische Komfort 
laut einer kleinen Nutzerbefragung unverändert. Damit ist 
der „Proof of Concept” für ML-optimierte Reglerparameter 
erbracht.

2.6  Potenziale zur Optimierung durch  
den Projektansatz
Im Rahmen des Projekts sollte anhand eines Use Case demon
striert werden, wie sich durch datenbasierte Optimierung der 
Heizkurve relevante Einsparpotenziale inklusive einer Rücklauf-
temperaturabsenkung erschließen lassen. Dazu wurde auf Basis 
realer Betriebsdaten zunächst ein physikalisches Simulations-
modell erstellt. Dieses diente als Grundlage zur Generierung von 
Trainingsdaten für ein Surrogate-Modell, das mithilfe eines neu-
ronalen Netzes entwickelt wurde. Dieses Surrogate-Modell bil-
dete das Verhalten des Systems ausreichend genau ab und 
konnte in einem nachfolgenden Optimierungsschritt zur Identi-
fikation geeigneter Reglerparameter verwendet werden.

Besonders hervorzuheben ist dabei:

	■ Der Trainingsdatensatz umfasste nur wenige Wochen aus  
einer Winterperiode, was zeigt, dass auch mit begrenzten 
Daten aussagekräftige Optimierungen möglich sind.

	■ Die Anwendung des Surrogate-Modells ermöglichte eine  
effiziente Optimierung, ohne dass erneut umfangreiche  
physikalische Simulationen notwendig waren.

Die anschließende Analyse der implementierten Regelung im  
realen Betrieb zeigte

	■ eine Reduktion der Rücklauftemperatur von 2 bis 3 K

	■ eine potenzielle Senkung der kumulierten Wärmemenge 
über die Vergleichstage von ungefähr 8-9 %

	■ eine Indikation für eine mögliche Einsparung von  
Heizkosten gegenüber dem ursprünglichen Zustand

Die Potenziale des Ansatzes liegen insbesondere in

	■ der verbesserten Regelbarkeit in Übergangszeiten  
(Frühjahr/Herbst)

	■ der Erkenntnis, dass eine identische Außentemperatur im 
Frühjahr andere Auswirkungen hat als im Winter – eine  
dynamisch angepasste Heizkurve könnte hier zusätzliche  
Effizienzgewinne ermöglichen

	■ der Möglichkeit, den Ansatz auf andere Gebäude mit  
ähnlicher Datenlage zu übertragen

	■ der Tatsache, dass keine umfassende Sensorik (z. B. Innen-
raumtemperaturmessung) notwendig war
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Der hier vorgestellte Use Case zeigt exemplarisch das Potenzial 
der datenbasierten Optimierung auf Gebäudeebene. Um dieses 
Potenzial systematisch zu heben, ist es notwendig, solche Ansät-
ze auf weitere Liegenschaften zu übertragen.

Herausforderungen bei der Übertragbarkeit
Die für die Skalierung der Methode notwendige Standardisie-
rung des Modells ist aufgrund individueller Gegebenheiten  
(Gebäudetechnik, Nutzerverhalten, hydraulische Einbindung) 
anspruchsvoll. Eine direkte Übertragung der Methodik ist daher 
nicht ohne Weiteres möglich. Es besteht weiterer Forschungs-
bedarf, um

	■ übertragbare Modellierungsansätze für typische  
Gebäudekonfigurationen zu entwickeln

	■ ML-Ops Pipelines zur automatisierten Kalibrierung und  
Validierung zu nutzen

	■ rein datenbasierte Modelle zur dynamischen Betriebs
optimierung zu erproben

2.7  Fazit der Umsetzung des Use Case
Der im Projekt verfolgte Ansatz zeigt exemplarisch, wie mithilfe 
von Methoden des maschinellen Lernens Verbesserungen im 
Fernwärmesystem möglich sind. Der ausgeführte Use Case  
des Auto- und Continuous-Commissioning von Regelgeräten 

an realen Fernwärme-Hausstationen zeigt dies. Unter Auto-
Commissioning wird eine automatisierte Anpassung von Reg-
lerparametern an die individuellen Betriebsbedingungen des 
jeweiligen Gebäudes verstanden. Dies soll sicherstellen, dass 
eine optimale Regelung der Hausstationen erreicht wird. Beim 
Continuous-Commissioning wird zudem eine kontinuierliche 
Anpassung der Reglerparameter an sich verändernde Betriebs-
bedingungen betrachtet. 

Der Projektansatz belegt ein klares Optimierungspotenzial für 
die Bereitstellung von optimierten Reglerparametern. Wie ausge-
führt, kann eine Reduktion der Rücklauftemperaturen von HAST 
in der Größenordnung von 2 bis 3 K durch diese Maßnahmen 
erreicht werden, was zu einer Effizienzsteigerung des Fernwärme-
systembetriebs und zu einer Kostenreduktion für den Fernwär-
meversorgungsunternehmen führt. Mit einem Cost Reduction 
Gradient (CRG) von ca. 0,5 bis 0,65 €/MWh*K bei der Wärmeer-
zeugung beispielsweise mit Wärmepumpen (siehe Averfalk et al. 
2021) lässt sich eine Kostenreduktion für konkrete Wärmenetze 
abschätzen. Dies würde bei einer Umsetzung der beschriebenen 
Methode auf alle Gebäude im Fernwärmenetz in Neubranden-
burg mit einer jährlichen Wärmeabgabe von ca. 237 GWh eine 
Einsparung von ungefähr 355.000 €/a bedeuten. Für die weitere 
Skalierung des Verfahrens auf weitere Gebäude und Wärmenetze 
liegt die Herausforderung nun darin, diesen Ansatz über Einzel-
objekte hinaus zu verstetigen und ihn in die Praxis übertragbar 
zu machen. Dynamisch adaptive Heizkurvenregelungen könnten 
dabei einen zentralen Baustein darstellen, insbesondere in den 
energetisch sensiblen jahreszeitlichen Übergangszeiten.
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3. Projektteil 2: Methodik zur  
Bewertung von ML Use Cases



3.1  Beschreibung der Methodik 
Die im Projekt erarbeitete Bewertungsmethode basiert auf  
einem zweistufigen Konzept, in dem zunächst eine datenlose, 
semiquantitative Einschätzung der drei Größen Nutzen, Auf-
wand und Risiko ermittelt wird. 

Für die erste Phase wurde im Projekt der ML4FW-Fragebogen  
erstellt, der durch die Abfrage der Präferenzen, Umstände und 
Voraussetzungen des Anwenders eine personalisierte Auswer-
tung von Informationen aus einer hinterlegten Wissensbasis  
vornimmt. Auf diese Weise kann der Anwender ohne großen  
Aufwand eine erste Einschätzung zu im Fragebogen hinterlegten 
Use Cases erhalten und auf Basis einer erstellten Übersicht ent-
scheiden, welchen Use Case er tiefergehend evaluieren möchte. 

In der zweiten Phase kann der Nutzer dann auf Grundlage seiner 
Daten eine genauere Auswertung des identifizierten Use Case 
durch ML-Experten vornehmen lassen, um zu einer finalen Ent-
scheidung zu gelangen. Das zweistufige Konzept der Bewertung 
ist in Abbildung 18 grafisch dargestellt. 

Im Rahmen dieses Projekts wurde der ML4FW-Fragebogen zur 
Durchführung von Phase 1 der Bewertung erarbeitet und in Form 
einer Python-Anwendung zur allgemeinen Nutzung vorbereitet 
und in Github veröffentlicht (https://github.com/AEFDI/ML4FW). 
Zudem wurde eine beispielhafte Detailauswertung des Use Case 
zur Reglerparameteroptimierung (siehe Kapitel 2.5 „Ergebnisse 
aus dem Feldtest“) vorgenommen. In den nächsten Abschnitten 
werden der Erstellungsprozess und die Funktionsweise des Frage-
bogens beschrieben.

Künstliche Intelligenz und maschinelles Lernen werden bereits 
in vielen unterschiedlichen Bereichen eingesetzt. Im Betrieb von 
Fernwärmesystemen kommen diese Methoden bisher jedoch 
nur sporadisch zum Einsatz, obwohl es große Potenziale für die  
Anwendung von ML-Methoden gibt. Der Umsetzung von ML Use 
Cases stehen allerdings mehrere Hürden im Weg, denn oft ist 
unklar, welche Möglichkeiten es gibt, mittels ML Effizienzen im 
Betrieb zu steigern, welche Voraussetzungen für bestimmte Use 
Cases erfüllt sein müssen, welche Umsetzungsrisiken bestehen 
und insbesondere wie sich Nutzen und Aufwand des Use Case 
am Ende darstellen. Um diese Probleme anzugehen, wurde im 
Rahmen der wissenschaftlichen Begleitung des Projekts ML4FW 
eine Bewertungsmethode für ML Use Cases im Fernwärmesys-
tembetrieb entwickelt und unter anderem auch auf den im Pro-
jekt umgesetzten Use Case zur ML-gestützten Reglerparamete-
roptimierung angewandt. Die folgenden Abschnitte beschreiben 
den Erstellungsprozess, die Funktionsweise, den Mehrwert und 
die Anschlussmöglichkeiten dieser Methodik. Das Ziel war da-
bei, eine möglichst allgemein anwendbare Bewertungsmethode 
zu entwickeln, die ohne ausgeprägte ML-Expertise angewandt 
werden kann, um interessante Use Cases zu identifizieren und 
eine erste Abschätzung von Nutzen, Aufwand und Risiko von ML 
Use Cases zu erhalten.

Phase 1

Phase 2

Empfohlene 
ML-Metriken

Testdatensatz

Risiko

Aufwand und 
Übertragbarkeit

Nutzen

Genauere Auskün�e

Risiko

Aufwand und 
Übertragbarkeit

Nutzen

Fragenkatalog

Use Case

Erste Auskün�e

ML-Auswertung

Multikriterienanalyse

Abbildung 18: Zweistufiges Konzept für die Bewertung von ML Use Cases
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Erstellung des Fragebogens
Für die Erstellung des ML4FW-Fragebogens wurden existierende 
ML Use Cases durch eine Literaturrecherche ermittelt. Analysen 
von wissenschaftlichen Veröffentlichungen zu diesen Use Cases 
wurden mit Praxiserfahrungen und Expertenwissen des Fraun-
hofer IEE, des Fraunhofer IBP, der AGFW und der SAMSON AG zu 
einer Wissensbasis kombiniert, die die Einschätzung der Use 

Cases hinsichtlich verschiedener Kriterien ermöglicht. Auch 
wurden gewonnene Erfahrungen aus der Erprobung der ML-ge-
stützten Reglerparameteroptimierung berücksichtigt. Durch die 
Kombination der verschiedenen Informationsquellen wurde ein 
initiales Bewertungskonzept erstellt, das anschließend iterativ 
verbessert und in eine Python-Anwendung überführt wurde. Der 
Erstellungsprozess ist in Abbildung 19 schematisch dargestellt.

Existierende 
Use Cases

Initiales 
Bewertungskonzept

Analyse

Interviews und Workshops Interviews und Workshops
Wissensbasis

Iteration 2

FeedbackBeratung

Iteration 1

Finale Iteration

Fachexperten

…

Bewertungs-
methode

Use-Case-
Erprobung

Fraunhofer
IEE

Erstellung der Wissensbasis
Für die Erstellung der Wissensbasis wurde zunächst eine Ein-
grenzung des thematischen Rahmens auf den Fernwärmesys-
tembetrieb vorgenommen. Dies beinhaltet die Verteilung von 
Wärme durch Rohrnetzwerke sowie den Transfer von Wärme 
durch Hausstationen und schließt Netzplanungsaspekte sowie 
die Wärmeproduktion und verbraucherspezifische Use Cases, 
die sich nicht auf die Hausstation beziehen, aus.

Nach der Eingrenzung des Themas wurden wissenschaftliche 
Veröffentlichungen zu Use Cases im Bereich des Fernwärme-
systembetriebs identifiziert und kategorisiert. Aktuelle Review-
Paper zeigen, dass die Vorhersage von Wärmebedarfen mit  
72 Prozent den größten Anteil an den existierenden wissen-
schaftlichen Veröffentlichungen zum Thema ML in der Fernwärme 

hat (Mbiydzenyuy 2021). Des Weiteren wurden die Kategorien 
prädiktive Instandhaltung und Betriebsstrategien identifiziert. 
Der große Unterschied bei den Anteilen der Kategorien in der 
Literatur ist unter anderem auf die Umsetzbarkeit und die Daten-
anforderungen von ML Use Cases aus den jeweiligen Kategorien 
zurückzuführen. Während Wärmebedarfsprognosen in ihrer 
einfachsten Form bereits mit verhältnismäßig wenigen, leicht 
verfügbaren Informationen wie Wetterprognosen und Messungen 
von Vor- und Rücklauftemperaturwerten realisierbar sind, be-
nötigen Use Cases zum Thema Instandhaltung oftmals detail-
liertere Informationen über Instandhaltungshistorien und um-
fangreiche Messdaten. Betriebsstrategien benötigen in der Regel 
ebenfalls größere Mengen an Daten aus unterschiedlichen 
Quellen und tendieren zusätzlich zu einer komplexen Umset-
zung, da viele Use Cases in diesem Bereich die Koordination 

Abbildung 19: Schematische Darstellung des Erstellungsprozesses des Fragebogens zur Bewertungsmethode
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verschiedener Teile des Fernwärmenetzes erforderlich machen. 
Nicht zuletzt liefern Wärmebedarfsprognosen in einigen Fällen 
den Grundbaustein, um komplexere Betriebsstrategien umzu-
setzen.

Für das weitere Vorgehen wurden die Kategorien weiter verfei-
nert und es wurde eine Unterscheidung zwischen der Instand-
haltung des Rohrleitungsnetzes und der Instandhaltung von 
Hausstationen vorgenommen. Analog wurden die Betriebsstra-
tegien aufgeteilt, sodass sich die Wissensbasis für die Erstellung 
des Fragebogens zur Bewertung von ML Use Cases im Bereich 
des Fernwärmesystembetriebs schließlich in fünf Kategorien un-
terteilen ließ: 

	■ Wärmebedarfsprognosen (WBP) 

	■ Instandhaltung Hausstationen (InHAST) 

	■ Instandhaltung des Rohrleitungsnetzes (InRN) 

	■ Betriebsstrategien Wärmenetz (BeWN) 

	■ Betriebsstrategien Hausstationen (BeHAST)

Aus den ermittelten Kategorien wurden anschließend 19 Use  
Cases, unter denen sich auch die im Projekt umgesetzte ML-
gestützte Reglerparameteroptimierung befindet, für die weitere 
Berücksichtigung in der Bewertungsmethode ausgewählt. Eine 
Auflistung der ausgewählten Use Cases inklusive der Literatur-
quellen und einer kurzen Zusammenfassung ist im Anhang  
(Tabelle 7) zu finden.

Bewertungskonzept
Für die Bewertung der kategorisierten und ausgewählten ML Use 
Cases wurde eine gestufte Herangehensweise gewählt. Verglei-
che des Nutzens zweier ML Use Cases aus verschiedenen Kate-
gorien stellen sich als besonders herausfordernd dar, weil für die 
Quantifizierung von Mehrwerten der einzelnen Use Cases unter-
schiedliche Kriterien relevant sind. Aufgrund dieser Problematik 
sieht das Bewertungskonzept zunächst eine oberflächliche Ab-
wägung der identifizierten Use-Case-Kategorien gegeneinander 
vor und legt dafür verallgemeinerte, kategorieübergreifende Kri-
terien an. Nach der Auswahl der Kategorie werden Use Cases in-
nerhalb der Kategorien bezüglich spezifischer lokaler Kriterien 
verglichen, die sich von Kategorie zu Kategorie unterscheiden 
können. Auf diese Weise wird zum einen die Vergleichbarkeit 
von Use Cases sichergestellt und zum anderen jedes entschei-
dende Kriterium für die Quantifizierung des Nutzens berücksich-
tigt. Zudem bietet der Kategorievergleich auf abstrakter Ebene 
die Möglichkeit, auch die Kategorien an sich zu priorisieren, so-
dass in einem zweistufigen Verfahren die am besten passenden 
Use Cases ermittelt werden können. In den nächsten Abschnit-
ten wird die Erstellung der Kategorie- und Use-Case-Vergleiche 
erläutert.

3.1.1  Einschätzung von ML-Use-Case-Kategorien
Für den Vergleich der ML-Use-Case-Kategorien werden die sie-
ben globalen Bewertungskriterien Kostenaufwand, Zeitauf-
wand, Personalaufwand, Versorgungssicherheit, Umweltauswir-
kungen, Automatisierungsgrad und Energieeffizienz angelegt. 
Sie werden durch die Zuweisung einer Zahl zwischen 1 und 5 
quantifiziert. Die Zahl 1 stellt dabei eine geringe Relevanz des 
Kriteriums dar und 5 drückt dementsprechend eine sehr hohe 
Relevanz aus.

Die sieben Kriterien werden nach der Auswertung in die Größen 
„Nutzen“ und „Aufwand“ zusammengefasst. Die Größe „Auf-
wand“ setzt sich aus den Kriterien Kostenaufwand, Zeitaufwand 
und Personalaufwand zusammen, wohingegen die Größe „Nut-
zen“ durch die Kriterien Versorgungssicherheit, Umweltauswir-
kungen, Automatisierungsgrad und Energieeffizienz bestimmt 
wird.

Um die passenden Zahlenwerte für jede Kategorie und jedes Kri-
terium zu ermitteln, wird innerhalb des ML4FW-Fragebogens zu-
nächst die Priorisierung der Kriterien durch den Anwender abge-
fragt, wobei er jedem Kriterium ein Gewicht zwischen 1 und 5 
zuweist. Diese Anwenderpräferenzen werden anschließend mit 
einer hinterlegten Experteneinschätzung für jede Kategorie und 
jedes Kriterium verrechnet und durch Mittelwertbildung zu den 
letztendlichen Nutzen- und Aufwandszahlen zusammengefasst. 
Die hinterlegte Experteneinschätzung basiert auf einer Umfrage, 
die im Rahmen des Projekts durchgeführt wurde. In dieser Um-
frage wurden neun Experten des Fraunhofer IEE, des Fraunhofer 
IBP und der AGFW zu ihren Einschätzungen bezüglich der fünf 
ML-Use-Case-Kategorien und der sieben Kriterien befragt. Die  
finale Experteneinschätzung wird durch den Mittelwert der Um-
fragerückmeldungen dargestellt. Genaueres zu den Ergebnissen 
der Umfrage ist in Abschnitt 3.2.2 „Ergebnisse der Kategorieum-
frage“ zu finden.

Neben den Größen „Nutzen“ und „Aufwand“ wird zudem eine 
Einschätzung des Umsetzungsrisikos für jede Kategorie ermit-
telt, indem Antworten des Anwenders zu Fragen in Bezug auf Da-
tenzugriffsrechte und mögliche Konflikte bei der Umsetzung des 
Use Case ausgewertet werden.

3.1.2  Einschätzung der ML Use Cases
Für die Einschätzung der ML Use Cases wurden innerhalb jeder 
der fünf ML-Use-Case-Kategorien spezifische Kriterien definiert. 
Beispielsweise setzt sich der Nutzen eines Use Case aus der  
Kategorie „Instandhaltung Hausstationen“ unter anderem aus 
Kriterien wie „Fehlerfrüherkennung“ und „Anzahl Fehlalarme“ 
zusammen, wohingegen der Nutzen eines Use Case aus der  
Kategorie „Wärmebedarfsprognosen“ Kriterien wie „Genauigkeit 
der Prognose“ und „Berücksichtigung des Kundenkomforts“ be-
inhaltet.
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Um den Nutzen eines ML Use Case hinsichtlich der angelegten 
lokalen Kriterien zu quantifizieren, nimmt der Anwender zu-
nächst eine weitere subjektive Gewichtung analog zum Vorge-
hen bei der Kategorieeinschätzung vor. Anschließend werden 
diese Gewichtungen mit hinterlegten Experteneinschätzungen 
des Projektbearbeitungsteams verrechnet. 

Für die Einschätzung des Aufwands werden kategoriespezifische 
Fragen zu Themen wie Datenverfügbarkeit, Datenaufbewahrungs-
aufwand und Metadatenverfügbarkeit durch den Anwender be-
antwortet und mit Experteneinschätzungen zu einem finalen 
Aufwandswert kombiniert. 

Zuletzt wird für jeden Use Case ein Umsetzungsrisikowert be-
stimmt. Das Risiko eines Use Case wird als Mittelwert des zuge-
hörigen Kategorierisikos und einer festgelegten Expertenein-
schätzung von 1 bis 5 berechnet.

Eine detaillierte Beschreibung der Bewertungsmethode sowie 
die konkrete Implementation ist im frei zugänglichen Github-
Repositorium (https://github.com/AEFDI/ML4FW) zu finden.

3.2  Ergebnisse der wissenschaftlichen Bewertung 
Die Ergebnisse der wissenschaftlichen Bewertung sind in den 
hinterlegten Experteneinschätzungen zu den 19 bewerteten ML 
Use Cases zusammengefasst. Der für die Personalisierung dieser 
Einschätzungen konzipierte ML4FW-Fragebogen wurde in eine 
Python-Anwendung überführt, die für die Use-Case-Einschät-
zung die folgenden Schritte durchläuft:

1.	 Kategorieauswahl

2.	 Gewichtung globaler Kriterien

3.	 Gewichtung lokaler Kriterien

4.	 Beantwortung kategorieübergreifender Fragen

5.	 Kategoriespezifische Fragen zum Risiko 

6.	 Kategoriespezifische Fragen zu Daten und Aufwand

7.	 Auswertung und Visualisierung der Ergebnisse

Neben der konkreten Umsetzung des Fragebogens als ausführ-
bare Anwendung ist in den nächsten beiden Abschnitten auch 
die Auswertung der Umfrage zur Erstellung der Kategoriebewer-
tungsgrundlage beschrieben. 

3.2.1  Der ML4FW-Fragebogen
Die Bewertungsmethode wurde in Form einer Python-Anwen-
dung umgesetzt, die ein Graphical User Interface (GUI) erzeugt. 
Dieses ermöglicht es dem Anwender, den Fragebogen zur Ein-
schätzung von ML Use Cases im Bereich Fernwärmesystembe-
trieb durchzugehen und die gemachten Angaben automatisch 
ohne Übermittlung von Informationen an einen zentralen Ser-
ver analysieren zu lassen. Die Python-Anwendung ist in eine 
unter Microsoft Windows ausführbare EXE-Datei überführt wor-
den und erzeugt nach dem Start das in Abbildung 20 links oben 
sichtbare Startmenü. In diesem Menü werden der Zweck und 
der Ablauf des Fragebogens beschrieben. Zudem bietet es die 
Funktion, einen neuen Fragebogen zu beginnen oder einen 
existierenden Speicherstand zu laden.

Beim Start eines Fragebogens werden die fünf zur Auswahl  
stehenden ML-Use-Case-Kategorien angezeigt, wobei der  
Anwender die für ihn relevanten Kategorien selektieren kann.  
Anschließend nimmt der Anwender die Gewichtung der globalen 
Kriterien vor, gefolgt von der Beantwortung der kategoriespezifi-
schen Fragen. Nach dem Abschluss des Fragebogens können die 
Ergebnisse des Kategorievergleichs grafisch dargestellt werden. 
Durch Klicken auf die Kategoriepunkte im Graphen können die 
zur jeweiligen Kategorie gehörenden Use-Case-Vergleiche visua-
lisiert werden (Abbildung 20 rechts oben). Durch das Auswählen 
eines Use Case öffnet sich dann ein weiteres Fenster, in dem eine 
kurze Beschreibung, eine zusammenfassende Pro- und Kontra-
Tabelle und die Literaturquelle zum jeweiligen Use Case zu finden 
sind. Darüber hinaus kann sich der Nutzer Handlungsempfehlun-
gen zum ausgewählten Use Case anzeigen lassen. Das Klicken 
auf den entsprechende Schaltfläche öffnet ein weiteres Fenster 
in welchem die Vorschläge für die nächsten Schritte – hin zu einer 
Testumsetzung – gemacht werden (Abbildung 20 untere Reihe). 
Dabei werden mögliche Metriken zur Auswertung des Use Cases 
vorgeschlagen, die benötigten Datenquellen und Anmerkungen 
zur Datenbeschaffenheit aufgeführt und Hinweise für eine mög-
liche Testauswertung des Use Cases gegeben. Bei der Auswahl 
eines nicht anwendbaren Use Case wird zusätzlich zu den ande-
ren Informationen noch der Ausschlussgrund dargelegt. Dafür 
werden Fragen und Antworten aufgelistet, die zur Verletzung von 
Anwendbarkeitsbedingungen des Use Case geführt haben. Die 
Anwendung ermöglicht zudem das Speichern der Grafiken und 
der Fragebogenergebnisse in dem vom Programm angelegten 
Ordner „ML4FW_Fragebogen_Ausgaben“.
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3.2.2  Ergebnisse der Kategorieumfrage
Für die Erstellung der Bewertungsgrundlage der Kategorie
vergleiche wurde eine Expertenumfrage zur Einschätzung der 
ML-Use-Case-Kategorien durchgeführt. Darin wurden Experten  
des Fraunhofer IEE, des Fraunhofer IBP, des AGFW und der 
dena befragt. Zusätzlich zu den fünf ML-Use-Case-Kategorien 
des ML4FW-Fragebogens wurde die Kategorie Betrieb der Wärme
erzeugung hinzugefügt, um eine zukünftige thematische Erweite-
rung des ML4FW-Fragebogens zu erleichtern und ein vollständiges 
Einschätzungsbild zu ML Use Cases im Bereich des Betriebs von 
Fernwärmesystemen zu bekommen. 

Insgesamt wurden neun Rückmeldungen gegeben, wobei zwei 
Formulare nur teilweise ausgefüllt wurden. 

Eine Zusammenfassung der Umfrageergebnisse ist in Tabelle 5 
zu sehen. Dort sind die Mittelwerte der Punktevergaben pro 
Kategorie und Kriterium aufgetragen, wobei fehlende Angaben 
ignoriert wurden. Während sich hinsichtlich des Kriteriums 
Energieeffizienz sowie bezüglich der Umweltauswirkungen von 
ML Use Cases im Betrieb der Wärmeerzeugung (BeErz) und der 
Hausstationen (BeHAST) deutliche Tendenzen hinsichtlich ei-
nes repräsentativen Mittelwerts ausgeprägt haben, liegt den 

Abbildung 20: Screenshots des Startmenüs, der Ergebnisvisualisierung und der Use-Case-Zusammenfassung der Python-Anwendung zur Nutzung des Fragebogens
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Mittelwerten zu den Kriterien Personal- und Zeitaufwand eine 
besonders große Streuung in den Daten zugrunde. Die final 

resultierende Wertetabelle 8 stellt das Hintergrundwissen für die 
Kategorievergleiche im Rahmen des ML4FW-Fragebogens dar.

Kosten
aufwand

Zeitaufwand
Personal
aufwand

Versorgungs-
sicherheit

Umwelt
auswirkungen

Automati
sierungsgrad

Energie
effizienz

InHAST 3 4 4 4 3 3 3

InRN 3 4 4 5 3 3 3

WBP 1 2 1 2 4 5 4

BeWN 3 3 3 3 4 4 4

BeHAST 2 3 2 3 5 4 4

BeErz 4 4 3 2 4 4 4

Tabelle 4: Berechnete Mittelwerte aus den Rückmeldungen zur Kategorieumfrage  (Bewertung von „1 – trifft nicht zu / niedrig“ bis „5 – trifft voll zu / hoch“) 
Legende: InHAST: Instandhaltung Hausstationen; InRN: Instandhaltung Rohrleitungsnetz; WBP: Wärmebedarfsprognosen; BeWN: Betriebsstrategien Wärme-
netz; BeHAST: Betriebsstrategien Hausstationen; BeErz: Betrieb Wärmeerzeugung

3.3  Exemplarische Auswertung des Use Case
Nach der Fertigstellung der Bewertungsmethode in Form einer 
Python-Anwendung wurde der Fragebogen von der Neuwoba 
ausgefüllt. Auszüge aus dieser Auswertung dienen hier der Ver-
anschaulichung der Kategorie- und Use-Case-Bewertungen. 
Insgesamt ergibt sich aus der Kombination der vorgenomme-
nen Gewichtungen der globalen Kriterien mit dem vordefinier-
ten Kategorieranking aus Tabelle 5 der Kategorievergleich in 
Abbildung 21. Zum einen weist die Kategorie Wärmebedarfs-
prognosen (WBP) bei vergleichbarem Nutzen gegenüber  
der Kategorie Betriebsstrategien Wärmenetz (BeWN) einen 

deutlich geringeren Aufwand und ein geringeres Umsetzungs
risiko auf. Zum anderen sind alle Use Cases in der Kategorie 
BeWN nicht umsetzbar, da notwendige Daten zur Umsetzung 
fehlen (siehe Abbildung 22 oben rechts). Die Kategorie Betriebs-
strategien für Hausstationen (BeHAST) ist hinsichtlich sowohl 
des Aufwands als auch des Nutzens höher einzustufen als die 
Kategorie Instandhaltung von Hausstationen (InHAST).

Bei der Use-Case-Bewertung wird die Einordnung des BeHAST-
Use-Case „ML-unterstützte Reglerparameteroptimierung“ hier 
exemplarisch ausgeführt.

Abbildung 21: Grafische Darstellung des Kategorievergleichs der Testauswertung der Neuwoba
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Innerhalb der Kategorie BeHAST wird der Nutzen von Use Cases 
durch die Bewertungskriterien Senkung der Rücklauftempera-
turen, Interpretierbarkeit der verwendeten Modelle und Be-
rücksichtigung des Kundenkomforts bestimmt. Dafür wurden 
im Verlauf der Fragebogens Gewichtungen durch die Neuwoba 
vorgegeben und mit vordefinierten Werten kombiniert. Die 
vordefinierten Werte wurden in Abstimmung der Use-Case-
Umsetzung und der wissenschaftlichen Begleitung des Pro-
jekts als Bewertungsgrundlage für den Fragebogen festgelegt. 

Beim Punkt Senkung der Rücklauftemperaturen wurden aufgrund 
der Auswertungsergebnisse und der erfolgreich abgesenkten 
Rücklauftemperatur 4 von 5 Punkten vergeben. Hinsichtlich der 
Interpretierbarkeit sind die verwendeten Convolutional Neural 
Networks zwar zunächst als Black-Box-Methode angelegt, bieten 
jedoch durch die Architektur der Convolutions Anschlussmöglich-
keiten für Visualisierungen und erklärbare KI-Ansätze, um die 
Modellentscheidungen zu durchleuchten. Zudem fließt durch 
die vorgenommene Simulation von Trainingsdaten interpre-
tierbares Vorwissen in das Modell ein. Diese Abwägungen re-
sultierten in der Vergabe von 3 von 5 Punkten. Bezüglich des 

Kriteriums Kundenkomfort wurden in der Simulation der Trai-
ningsdaten für das ML-Modell Annahmen und Einschränkungen 
getroffen, um den Kundenkomfort zu berücksichtigen. In Kom-
bination mit der Kundenbefragung und dem Nichtvorliegen von 
Beschwerden wurden 4 von 5 Punkten vergeben. Mit den vorge-
nommenen Gewichtungen der Neuwoba, die alle Kriterien als 
etwa gleich wichtig angeben, ergibt sich so insgesamt ein Nut-
zen von etwa 3,5. Hinsichtlich der Einschätzung des Aufwands 
wurden die vordefinierten Einschätzungen aus Tabelle 6 mit den 
Antworten der Neuwoba zu Fragen hinsichtlich der Datenverfüg-
barkeit und möglicherweise notwendiger Datenerhebungen 
kombiniert und ergeben einen Aufwandswert von etwa 2,5. In 
Bezug auf das Umsetzungsrisiko wurden aufgrund des eingetre-
tenen Risikos des verzögerten Erhalts von Daten 3 von 5 Punkten 
vergeben, was sich mit dem durch die Angaben der Neuwoba er-
mittelten Kategorierisiko von 3 deckt. Somit wird der Use Case 
der ML-unterstützten Reglerparameteroptimierung in dieser Aus-
wertung mit geringem Aufwand, relativ hohem Nutzen und einem 
moderaten Umsetzungsrisiko bewertet. Die Zusammenfassung 
der Vor- und Nachteile des Use Case für den Anwender sind in 
Abbildung 23 zu sehen.

Abbildung 22: Grafische Darstellung der Use-Case-Vergleiche zu den ausgewählten Kategorien aus der Testauswertung der Neuwoba
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Kriterium Beschreibung Wert Begründung

Datenaufbewahrungsaufwand Einschätzung zum entstehenden Aufwand 
für die Datenspeicherung und Datenpflege 2

Das Gesamtvolumen der Trainingsdaten ist 
eher gering.

Kontinuierlicher Aufwand Schätzung des ständigen Aufwands bei 
einem kontinuierlichen Betrieb des ML Use 
Case

2
Sobald das System aufgesetzt ist, können 
die Reglerparameter automatisch optimiert 
werden.

Rechenaufwand Einschätzung des Rechenaufwands, der für 
die Modellerstellung entsteht 1

Das Training der Convolutional Neural Net-
works benötigte geringe Rechenressourcen.

Sensorinstallationsaufwand Aufwand für die Installation neuer Sensorik
4

Falls Sensorik fehlt, ist es sehr aufwendig, 
sie in Hausstationen nachzurüsten.

Implementationsaufwand Aufwand für das Implementieren der ML-
Lösung 3

Die Implementierung der Modelle und des 
Modelltrainings war von moderatem Auf-
wand geprägt.

Datenerhebungsaufwand Aufwand für das Sammeln von Daten für 
ein Modelltraining 5

Aufwendige Erstellung der Trainingsdaten-
simulation

Metadatenerhebungsaufwand Aufwand für das Sammeln von Metadaten 
für die Modellierung im Rahmen des Use 
Case

4
Die Trainingsdatensimulation benötigt 
viele Metadaten.

Tabelle 5: Kriterien zur Aufwandseinschätzung von ML Use Cases im ML4FW-Fragebogen mit Beschreibung und den exemplarisch aufgeführten vordefinierten Werten für den Use Case  
„ML-unterstützte Reglerparameteroptimierung“ inklusive kurzer Begründung der Bewertung 

Abbildung 23: Zusammenfassung der Auswertung zum Use Case „ML-unterstützte Regler-
parameteroptimierung“

3.4  Diskussion und Einordnung der Ergebnisse
Die dargestellte Bewertungsmethode ist ein erster vollständiger 
Entwurf einer automatisierten Einschätzungsmethodik für ML 
Use Cases im Fernwärmesystembetrieb. Neuartig ist dabei der 
Ansatz einer datenlosen Einschätzung, die von potenziellen 
Anwendern schnell und ohne detailliertes ML-Hintergrundwis-
sen vorgenommen werden kann. Das Ergebnis der Anwendung 
ist eine erste semiquantitative Abschätzung von Nutzen, Auf-
wand und Risiko der selektierten ML Use Cases auf einer Skala 
von 1 bis 5. Damit bietet der ML4FW-Fragebogen Akteuren aus 
dem Fernwärmesystembetrieb eine neuartige Möglichkeit zur 
persönlichen Einschätzung von ML Use Cases. Unter Einbezie-
hung der individuellen Präferenzen und Umstände des Nutzers 
wird das hinterlegte Expertenwissen im Kontext der Use Cases 
ausgewertet und zur resultierenden Einschätzung zusammen-
gefasst. Als Ergebnis des Projekts steht eine öffentlich nutzbare 
Python-Anwendung dieser Bewertungsmethode zur Verfügung, 
was die breite und unkomplizierte Nutzung der Bewertungsme-
thode ermöglicht. 

Da der ML4FW-Fragebogen zum Zeitpunkt des Projektabschlus-
ses ausschließlich innerhalb der Projekterarbeitung getestet 
und validiert wurde, steht noch eine Evaluation in der tatsächli-
chen Anwendung aus. Insbesondere Fragestellungen hinsicht-
lich der Formulierung und Begriffsdefinition in den Fragetexten 
können durch detailliertes Feedback in dedizierten Folgeprojek-
ten verfeinert werden, wobei stets die Balance zwischen Ein-
fachheit/Anwendbarkeit des Fragebogens und der notwendigen 
Spezifität/Komplexität der Fragen gewahrt werden muss. 
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Die entwickelte Bewertungsmethode ist ein erster Ansatz, die 
teils sehr heterogenen Umgebungsbedingungen in unterschied-
lichsten Fernwärmenetzen möglichst gut zu vereinen und alle 
relevanten Hauptfaktoren in einem allgemeinen Fragebogen un-
terzubringen. Dieser Zusammenfassungsprozess ist im Rahmen 
des ML4FW-Projekts angestoßen, jedoch noch nicht abgeschlos-
sen worden, da die resultierenden komplexen Fragestellungen 
größere zeitliche und personelle Ressourcen benötigen. Somit 
ist diese Bewertungsmethode als ein erster konkreter Anfang  
für weiterreichende Folgeaktivitäten zu sehen. Dazu gehört 
 auch die im Projekt durchgeführte Kategorieumfrage, die mit  
neun Teilnehmern nicht repräsentativ ist. Sie stellt durch die  
berechneten Mittelwerte der Kategorieeinschätzungen eine 
mit großen Unsicherheiten behaftete, erste Einschätzung der 
gegebenen sechs Kategorien hinsichtlich der sieben globalen 
Bewertungskriterien dar. Somit ist eine gute Grundlage für  
die Bewertung und Einschätzung von ML Use Cases im Fern-
wärmesystembetrieb gegeben, es bieten sich aber auch klare  
Anschluss- und Verbesserungsmöglichkeiten. 

3.4.1  Feedback und Verbesserungen
Auf Basis der ersten Versionen des ML4FW-Fragebogens wurde 
Feedback innerhalb des Projektkonsortiums eingesammelt. 
Durch Rückmeldungen der dena, der AGFW und der SAMSON AG 
erfolgten einige Verbesserungen. Dabei wurden hauptsächlich 
Änderungen vorgenommen, um die Aspekte Nutzerorientierung 
in der App, Begriffsdefinitionen und Anwendbarkeit des Frage-
bogens zu verbessern. 

Besonders in Bezug auf Zusatzinformationen zur Einordnung 
und zum Verständnis von Fragen wurden Maßnahmen umge-
setzt, sodass zu jeder Frage eine Infokachel verfügbar ist, die 
den Kontext der Frage einordnet, begründet, warum diese Frage 
gestellt wird, und die Auswirkungen der verschiedenen Antwort-
möglichkeiten aufführt. Zusätzlich wurden besonders vor dem 
zentralen Element der Kriteriengewichtungen Infotexte einge-
fügt, die die Bedeutung dieser Fragen für den Nutzer erläutern 
und auf die optimale Nutzung dieser Fragen hinweisen, um die 
eigene Anwenderperspektive einzubringen.

Bezüglich der Anwendbarkeit des Fragebogens wurde insbeson-
dere angemerkt, dass einige Fragen lediglich die Antworten „Ja“ 
oder „Nein“ zulassen, weshalb Nutzer mit Bedingungen, die kei-
ne definitive Antwort zulassen, diesen Fragebogen nur mit Ein-
schränkungen oder gar nicht sinnvoll ausfüllen können. Dieses 
Konzept zu überarbeiten, würde allerdings eine aufwendige, 
tiefgreifende Überarbeitung des Auswertungskonzepts nach sich 
ziehen, die im Rahmen dieses Projekts nicht umsetzbar war.

Eine weitere Rückmeldung bezieht sich auf die Art und Weise, 
wie der ML4FW-Fragebogen veröffentlicht wird, da die ausführ-
bare EXE-Datei zwar einerseits einfache Einsatzmöglichkeiten 
mit wenigen technischen Einschränkungen bietet, aber  

andererseits für die Nutzung in Unternehmen aufgrund von  
IT-technischen Hürden problematisch sein kann. Aus diesem 
Grund ist eine Bereitstellung der Bewertungsmethodik mit dem 
gleichen Inhalt, aber in anderen Formaten wie beispielsweise 
Online-Fragebögen ebenfalls eine Möglichkeit, die Projekter
gebnisse weiter voranzutreiben. Während der Erweiterung des 
ML4FW-Projekts wurde noch ein zusätzliches Übersichtsfenster 
für die Beschreibung von Handlungsempfehlungen auf Use Case 
Ebene hinzugefügt.

Derartige Überlegungen sollten in möglichen Folgeprojekten  
berücksichtigt werden.

3.5  Fazit und Handlungsempfehlungen zur  
Bewertungsmethode
Als Handlungsempfehlung ergibt sich aus diesem Projekt zu-
nächst die Erprobung der erstellten Bewertungsmethode durch 
Akteure aus dem Bereich des Fernwärmesystembetriebs. Durch 
gezielte Einsammlung von Feedback können eine weitere Ver-
besserung und eine höhere Nutzerfreundlichkeit des Fragebo-
gens sichergestellt werden.

Darüber hinaus gibt es weitere Ansätze, um das Bewertungskon-
zept zu verbessern und den damit einhergehenden Mehrwert zu 
steigern. Zum einen ist eine weitere Durchführung und Anpas-
sung der im Projekt durchgeführten Umfrage zur Einschätzung 
der ML-Use-Case-Kategorien sinnvoll, um die Meinung von wei-
teren Expertinnen und Experten einzuholen und das Ergebnis 
aussagekräftiger zu gestalten. Im Einsammlungsprozess der Um-
fragerückmeldungen wurde festgestellt, dass die Einschätzung 
der Kategorien zu den gegebenen Kriterien eine größere Aufga-
be darstellt und nur wenige Expertinnen und Experten alle Kate-
gorien bezüglich jedes Themas einschätzen können. Somit ist 
eine Überarbeitung dieser Umfrage in zukünftigen Projekten 
notwendig. Darin könnte beispielsweise durch eine Konkretisie-
rung auf detailliertere, einfacher einzuschätzende Bewertungs-
kriterien die Beantwortbarkeit der Umfrage erhöht werden. Ein 
mögliches erweitertes Umfrageergebnis stabilisiert die Bewer-
tungsgrundlage und trägt auch dazu bei, sie aktuell zu halten.

Einen weiteren Schritt zur Verbesserung der Bewertungsmetho-
dik stellt die thematische Erweiterung des Fragebogens dar. Wie 
bereits in der Kategorieumfrage angelegt, wäre eine Erweiterung 
des Fragebogens um die Kategorie Betrieb der Wärmeerzeugung 
von großem Mehrwert. Zum einen werden in dieser Kategorie 
große Potenziale vermutet, die durch die Umsetzung von ML Use 
Cases gehoben werden können, zum anderen würde dies eine 
thematische Erweiterung vom Fernwärmesystembetrieb hin 
zum Betrieb ganzer Fernwärmesysteme bedeuten. 

Nicht zuletzt profitiert die Bewertungsmethodik von weiteren 
Umsetzungsprojekten von ML Use Cases im Fernwärmesystem
betrieb, deren Ergebnisse öffentlich zur Verfügung gestellt wer-
den. Für eine Schärfung und Präzisierung der vom ML4FW- 
Fragebogen ausgegebenen Auswertung sind mehr Berichte und 
Erfahrungen aus der praktischen Umsetzung von großem Vorteil.
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4 Schlussfolgerungen  
und Ausblick



Das in diesem Bericht dargestellte Projekt gliedert sich in zwei 
Bestandteile: In Projektteil 1 (Kapitel 2) wurde die Erprobung  
eines ML Use Case bearbeitet und in Projektteil 2 (Kapitel 3) eine 
Bewertungsmethodik für ML Use Cases im Fernwärmesystem
betrieb entwickelt. 

4.1  Schlussfolgerungen
Der im ersten Projektteil verfolgte Ansatz zeigt exemplarisch, 
wie mithilfe von Methoden des maschinellen Lernens Verbesse-
rungen im Fernwärmebetrieb möglich sind. Der ausgeführte Use 
Case des Auto- und Continuous-Commissioning von Regelge
räten an realen Fernwärme-Hausstationen demonstriert dies 
exemplarisch. Unter Auto-Commissioning wird eine automati-
sierte Anpassung von Reglerparametern an die individuellen 
Betriebsbedingungen des jeweiligen Gebäudes verstanden. Dies 
soll sicherstellen, dass eine optimale Regelung der Hausstatio-
nen (HAST) erreicht wird. Beim Continuous-Commissioning wird 
zudem eine kontinuierliche Anpassung der Reglerparameter an 
sich verändernde Betriebsbedingungen betrachtet. 

Der Projektansatz belegt ein klares Optimierungspotenzial für 
die Bereitstellung von optimierten Reglerparametern. Wie aus-
geführt, kann eine Reduktion der Rücklauftemperaturen von 
HAST in der Größenordnung von 2 bis 3 K und eine Senkung 
der kumulierten Wärmemenge über die Vergleichstage von un-
gefähr 8-9 % durch diese Maßnahmen erreicht werden, was zu 
einer Effizienzsteigerung des Fernwärmesystembetriebs und 
zu einer möglichen Kostenreduktion von 0,5 bis 0,65 €/MWh*K 
für das Fernwärmeversorgungsunternehmen führt (siehe Averfalk 
et al. 2021). Dies würde bei einer Umsetzung der beschriebenen 
Methode auf alle Gebäude im Fernwärmenetz in Neubrandenburg 
mit einer jährlichen Wärmeabgabe von ca. 237 GWh eine Einspa-
rung von ungefähr 355.000 €/a bedeuten. Für die weitere Skalie-
rung des Verfahrens auf weitere Gebäude und Wärmenetze liegt 
die Herausforderung nun darin, diesen Ansatz über Einzelob-
jekte hinaus zu verstetigen und ihn in die Praxis übertragbar zu 
machen. Dynamisch adaptive Heizkurvenregelungen könnten 
dabei einen zentralen Baustein darstellen, insbesondere in den 
energetisch sensiblen Übergängen zwischen den Jahreszeiten.

Im zweiten Projektteil wurde durch die Erstellung des ML4FW-
Fragebogens eine Möglichkeit geschaffen, die Digitalisierung der 
Fernwärme schneller voranzutreiben. Trotz des großen Potenzi-
als von ML-Anwendungen im Fernwärmenetz werden diese nur 
sporadisch eingesetzt. Gründe dafür sind oftmals Unklarheit 
über die bestehenden Möglichkeiten und ihre Voraussetzungen. 
Zudem ist die Abschätzung von Mehrwerten mit hohem Auf-
wand verbunden. 

Als Lösungsansatz für diese Probleme ermöglicht der ML4FW-
Fragebogen eine datenlose, semiquantitative Einschätzung von 
Nutzen, Aufwand und Risiko für eine repräsentative Auswahl von 
Use Cases im Fernwärmesystembetrieb. Als Open-Source-EXE 
wird er potenziellen ML-Anwendern unkompliziert als Download 
bereitgestellt. Die systematische Kategorisierung der Use Cases 
und die Fokussierung auf wesentliche Umsetzungsaspekte  

erlauben es Akteuren aus dem Fernwärmesystembetrieb, ohne 
tiefergehende Vorkenntnisse und mit geringem Aufwand ML-Effi-
zienzpotenziale zu erkunden. Durch die persönlichen Kriterien
gewichtungen innerhalb des Fragebogens wird eine individuelle 
Priorisierung und Identifikation interessanter ML Use Cases er-
möglicht, um im nächsten Schritt konkretere Detailüberlegungen 
zur Umsetzung anzustellen. 

4.2  Lessons Learned
Die Durchführung des Use Case in Projektteil 1 hat gezeigt, dass 
der Erfolg von KI- und ML-Anwendungen im Fernwärmesektor 
weniger von komplexen Algorithmen als von sauberen Prozes-
sen, realistischen Zeitplänen sowie einer belastbaren Daten- 
und IT-Basis abhängt. Aus den technischen und organisatori-
schen Erfahrungen lassen sich praxisnahe Empfehlungen 
ableiten, die zukünftige Projekte beschleunigen und typische 
Fallstricke vermeiden helfen. Die wichtigsten Erkenntnisse sind 
nachfolgend zusammengefasst.

	■ Realistische Zeitplanung
	■ Datenaufnahme, Hardware-Nachrüstungen und  

Genehmigungen dauerten deutlich länger als die  
Modell- und Code-Entwicklung.

	■ Empfehlung: Mindestens ein Pufferquartal für  
Sensoreinbau, Gateway-Inbetriebnahme und  
Datenbereinigung einplanen.

	■ Datenerfassung als Startpunkt
	■ Die Erstellung der Datensätze gestaltete sich teilweise 

herausfordernd und spiegelte die typischen Probleme 
bei der fortschreitenden Digitalisierung von Regel- und 
Messsystemen wider. Eine Auflistung der aufgetretenen 
Probleme ist in Kapitel 2.1 zu finden.

	■ Datenqualität vor Modellkomplexität
	■ Ein lückenfreies 1-Minuten-Logging war wertvoller  

als zusätzliche Messgrößen.
	■ Fehlende Felder (sekundärseitiger Massenstrom,  

Raumtemperaturen) begrenzten die Modellgüte  
und Aussagekraft.

	■ Erst nach mehr als einer Heizperiode mit stabilen  
Daten lohnt der Schritt zu komplexeren ML-Ansätzen  
(z. B. Reinforcement Learning).

	■ Frühe Einbindung aller IT- und OT-Akteure
	■ SSO-, Datastore- und API-Zugriffe müssen gemeinsam 

mit Netz- und Gebäude-IT freigeschaltet werden, sonst 
blockieren scheinbare Kleinigkeiten das ganze Projekt.

	■ ML-Ops klein starten, dann skalieren
	■ Eine schlanke Pipeline (Datastore → 1D-CNN →  

Gradienten-Optimierung → Regler-API) reichte  
für den Piloten.

	■ Für den Rollout sind Versionierung und Rollback  
der Modelle Pflicht; in der Pilotphase noch manuell  
erledigt.
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	■ Übertragbarkeit
	■ Die Methode funktioniert bei baugleichen Häuserzeilen; 

für heterogene Bestände braucht es Templates für Heiz-
kurven, Gebäudeklassen und Default-Parameter.

	■ Ein zentrales Repository mit validierten Simulations
modellen würde künftige Projekte beschleunigen.

	■ Wirtschaftlichkeit transparent machen
	■ Rücklauftemperatur sinkt; monetärer Vorteil vorhanden
	■ Eine frühzeitige Kommunikation dieser Einsparung  

erleichtert Investitionsentscheidungen für weitere  
Gateways.

Zusammenfassend lässt sich für den Projektteil 1 feststellen, 
dass eine saubere Datenbasis, klar definierte IT-Prozesse und ein 
schlankes, iterierbares ML-Ops-Gerüst wichtiger sind als hoch-
komplexe Algorithmen. Werden diese Grundlagen geschaffen, 
lassen sich in typischen Gebäuden nach wenigen Wochen Effizi-
enzgewinne erzielen.

Im Rahmen der wissenschaftlichen Begleitung und der Entwick-
lung der Bewertungsmethode in Projektteil 2 wurde mit dem Be-
trieb von Fernwärmesystemen ein breites Themengebiet mit 
zahlreichen ML-Anwendungsmöglichkeiten und sehr inhomoge-
nen Umsetzungsvoraussetzungen bearbeitet. Mit dem Ziel, ei-
nen einfach zu bearbeitenden Fragebogen zu erstellen, der ins-
besondere von Akteuren aus dem Fernwärmesystembetrieb 
genutzt werden kann, mussten die voraussichtliche Ausfüllzeit 
und damit einhergehend die Anzahl der Fragen und ihr Komple-
xitätslevel gering gehalten werden. Im Kontrast dazu erfordert 
eine akkurate Bewertung der Use Cases die Klärung vieler De-
tailfragen und zahlreiche Vertiefungsmöglichkeiten. Die Abwä-
gung dieser Aspekte stellte in allen Erarbeitungsphasen stets 
eine prägende Herausforderung dar. Durch eine stärkere Fokus-
sierung auf die Nutzbarkeit des Fragebogens und eine Limitie-
rung von Diskussionen zu Detailfragen kann der Erarbeitungs-
prozess der Bewertungsmethode effizienter gestaltet werden.

4.3  Ausblick 
Ausgehend von dem in diesem Bericht im Projektteil 1 dargestell-
ten „Proof of Concept“ für die Nutzung von Methoden des ma-
schinellen Lernens für die Optimierung von Hausstationen in 
Fernwärmesystemen stellt sich für Folgeaktivitäten die Frage, wie 
sich der Ansatz skalieren und somit in die Fernwärmepraxis über-
tragen lässt. So können die Methode und der Ansatz direkt im 
praktischen Fernwärmebetrieb verwendet werden und gegebe-
nenfalls eine entsprechende Verbreitung in der Branche finden. 

Um den Ansatz für die Praxis besser zugänglich zu machen, ist 
eine Vereinfachung der zurzeit nötigen Simulationsrechnungen 
für das Modelltraining wichtig. Derzeit ist die Anpassung der Si-
mulationsmodelle, für die etliche Parameter aus den realen An-
lagen wie Leitungslängen, Ventile etc. benötigt werden, für eine 
breite praktische Anwendung zu aufwendig (bzw. zu teuer). Ein 
möglicher Ansatz ist,  die Modelle im Rahmen eines Meta-Lear-
ning-Prozesses (vgl. Hospedales et al. 2020) aufzusetzen und so 

einen Modellsatz zu generieren, der für viele Anwendungsfälle 
und unterschiedliche Gebäude geeignet ist und sich durch die zu 
erhebenden Messdaten an die realen Gegebenheiten vor Ort an-
passen lässt. 

Ein weiterer Punkt bei der Weiterverfolgung des Ansatzes ist die 
Frage, wann ein Neutraining der Modelle und die Generierung 
eines neuen Satzes Reglerparameter nötig sind. Da in dem Ver-
fahren nicht immer ein direkter Zielwert erreicht werden muss, 
ist die Einschätzung, ob der Betrieb zu einem bestimmten Zeit-
punkt mit dem aktuellen Parametersatz noch effizient ist oder 
ob gegebenenfalls ein neuer und verbesserter Parametersatz 
den Betrieb aktuell weiter verbessern kann, nicht trivial. Eine 
Einbindung von Informationen über Raumtemperaturen in den 
Wohnungen und Komfortbedingungen, die eingehalten werden 
müssen, können die Funktionalität weiter verbessern. Die klassi-
schen Methoden der Anomalieerkennung greifen hier nicht, da 
der jeweilige optimale Betriebszustand von zu vielen nicht er-
fassten Umwelt- und Systembedingungen abhängt. Der Ansatz 
eines adaptiven Betriebs durch eine permanente Nachjustie-
rung der Reglerparameter ist nicht praktikabel, da dazu eine 
permanente und sichere Datenverbindung nötig ist. Beim realen 
Einsatz in Gebäuden kann es immer wieder zu Konnektivitäts-
problemen kommen, was die Anwendung eines solchen Ansat-
zes unmöglich macht. Der hier vorgeschlagene Ansatz ist robus-
ter im Einsatz, da nur die neuen Reglerparameter übertagen 
werden und die Anlage sonst auch ohne eine Datenanbindung 
optimiert läuft.

Ein weiterer Punkt für eine weitere Bearbeitung ist die Frage 
nach dem Business-Konzept für den Einsatz der Methode. Wer 
würde die Leistungen anbieten und welche Art von Produkt- und 
Preisgestaltung ist hier vonnöten? Welche Kosten fallen wo an 
und wer hat die Vorteile? Es ist gut vorstellbar, dass sich die 
Fernwärmesystembetreiber als Anbieter eignen und ihren Kun-
den, der Wohnungswirtschaft, eine Dienstleistung anbieten kön-
nen. Mit einem direkten Zugriff auf die Fernwärmeregler könn-
ten Wärmenetzbetreiber die Flexibilitäten des Netzes und der 
Gebäude besser nutzen und so gegebenenfalls teure Spitzenlas-
terzeuger einsparen. Für die Wohnungswirtschaft wäre eine Art 
Post-Commissioning Check in einem Kampagnenbetrieb (zum 
Beispiel einmal auf Anfrage etc.) der Reglerparameter vorteil-
haft, auch wäre mit den erhobenen Daten ein Abgleich zwischen 
bestellter und tatsächlich nötiger vertraglich vereinbarter Wär-
meleistung machbar. So können die Tarife für die Wärmeliefe-
rungen angepasst und es kann eine Optimierung der Fixkosten 
des Fernwärmeanschlusses erreicht werden. In der Praxis zeigt 
sich, dass oft zu hohe Leistungen bestellt werden, was die Wär-
mekosten für die Mieterschaft  und die Gebäudeeigentümer in 
die Höhe treibt. 

Hinsichtlich der in Projektteil 2 erarbeiteten Bewertungsmetho-
de ergeben sich ebenfalls einige Anschlussmöglichkeiten wie 
beispielsweise die Erweiterung der expertenbasierten Umfrage, 
um die Wissensgrundlage für den Fragebogen auszuweiten und 
repräsentativer zu gestalten. Die Open-Source-Veröffentlichung 
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schafft darüber hinaus Raum für Weiterentwicklungen – etwa 
durch zusätzliche Detaillierung der Handlungsempfehlungen für 
den Einstieg in die Detailanalyse und die letztendliche Umset-
zung von ML Use Cases.

Nicht zuletzt profitiert die Bewertungsmethodik von weiteren 
Umsetzungsprojekten von ML Use Cases im Fernwärmesystem
betrieb, deren Ergebnisse öffentlich zur Verfügung gestellt wer-
den. Für eine Schärfung und Präzisierung der vom ML4FW-Frage-
bogen ausgegebenen Auswertung sind mehr Berichte und 
Erfahrungen aus der praktischen Umsetzung von großem Vorteil.

Die hier ausgeführten Ergebnisse des Projekts belegen eindrück-
lich, welche Möglichkeiten Machine Learning für Anwendungen 
in der Fernwärmepraxis bietet, und zeigen beispielhaft, wie diese 
erfolgreich umgesetzt werden können. Weiterhin stellt die ent-
wickelte Bewertungsmethode für ML Use Cases eine Basis für 
die schnelle Beurteilung eines möglichen Einsatzes dieser Kon-
zepte dar. 
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Abkürzungsverzeichnis

ADAM	 Adaptive Moment Estimation

ANN	 Artificial Neural Network

API	 Application Programming Interface

BeErz	 Betrieb Wärmeerzeugung

BeHAST	 Betriebsstrategien Hausstationen

BeWN	 Betriebsstrategien Wärmenetz

CNN	 Convolutional Neural Network

CSV 	 Comma Separated Values

EXE	 Ausführbare Datei

GUI	 Graphical User Interface

HAST	 Hausstation

InHAST	 Instandhaltung Hausstationen

InRN	 Instandhaltung Rohrleitungsnetz

JSON	 JavaScript Object Notation

KI	 Künstliche Intelligenz

LSTM	 Long Short-Term Memory Network

MAE	 Mean Absolute Error

MAPE	 Mean Absolute Percentage Error

ML	 Machine Learning / Maschinelles Lernen

ML-Ops	 Machine Learning Operations

MLP	 Multilayer Perceptron

MSE	 Mean Squared Error

REST	 Representational State Transfer

SSO	 Single Sign-on

TWW	 Trinkwarmwasser

WBP	 Wärmebedarfsprognose

WBS	 Wohnungsbauserie

WMZ	 Wärmemengenzähler
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Name des Use Case Beschreibung Quelle Kategorie

Wärmelastprognosen anhand  
detaillierter Netzdaten

Wärmelastvorhersage für gesamtes Fernwärme-
netz mithilfe von mehreren LSTM-Architekturen

https://doi.org/10.1016/j.
arcontrol.2022.03.009 

und
https://doi.org/10.1016/j.

ifacol.2021.08.044 

WBP

Wärmelastprognose für Fernwär-
menetze mit Berücksichtigung 
der Netzstruktur

Prognose eines Gesamtnetzes anhand der  
Wärmelastprofile einzelner Gebäude und der 
Netzwerktopologie mit Graph Recurrent Neural 
Networks

https://doi.org/10.1016/j.
apenergy.2023.121753 

WBP

Wärmelastprognose für einzelne 
Gebäude und Stadtviertel

Kurzfristige Lastprognose anhand historischer 
Last- und Wetterdaten mithilfe von ANN in  
Kombination mit multipler linearer Regression

https://doi.org/10.1016/j.
energy.2023.129866 

WBP

Echtzeitprognose für Wärme
lasten in Fernwärmenetzen

Kurzfristige Wärmelastprognosen in Echtzeit  
mithilfe von LSTM

https://doi.org/10.3384/
ecp200050

WBP

Prognose für Wärmespeicher und 
Spitzenlastmanagement

Vorhersage der Wärmelasten und Speicherfüll-
stände zur Spitzenlastkappung mit Incremental 
Learning LSTM

https://doi.org/10.1016/j.
energy.2024.131690 

WBP

Haushaltsbezogene Wärme
lastprognose für individuelle  
Gebäude

Wärmebedarfsprognose auf Haushaltsebene 
mithilfe von Support Vector Regression (SVR) 
und Partikelschwarmoptimierung (PSO)

https://arxiv.org/
pdf/2112.01908

WBP

Anomalieerkennung durch  
Ensemble-Modellierung

Dieser Use Case setzt einfache ML-Modelle für jede 
einzelne Hausstation ein und führt parallel dazu 
ein Clustering der Hausstationen in verschiedene 
Gruppen durch. Auf Basis dieser beiden Informa
tionslevel kann ein Ensemble-Modell erstellt  
werden, das das Erkennen von fehlerhaften Haus-
stationen ermöglicht.

https://doi.org/10.1016/j.
eswa.2022.116864

InHAST

Anomalieerkennung mithilfe  
von Clustering-Methoden

Durch die Anwendung von Clustering-Verfahren 
auf Basis von Zeitreihendaten der HAST werden 
Ausreißer-HAST identifiziert.

https://doi.org/10.1109/
FMEC62297.2024.10710205

InHAST

Rekonstruktionsbasierte  
Normalverhaltensmodelle

In diesem Use Case wird auf Basis der Wärme
leistungsdaten das Erkennen von Abweichungen 
vom normalen Verhalten von HAST durch die  
Anwendung von rekonstruktionsbasierten  
Normalverhaltensmodellen wie beispielsweise 
Autoencodern ermöglicht. Sie erlernen das  
normale Verhalten auf Basis von historischen 
Daten der HAST.

https://doi.org/10.1109/
ICIEA48937.2020.9248108

InHAST

Regressionsbasierte  
Normalverhaltensmodelle

Durch die Nutzung regressionsbasierter Modelle 
wird das Verhalten von HAST basierend auf 
einem bereitgestellten Datensatz erlernt. Durch 
den Abgleich von weiteren Betriebsdaten mit  
der Modellvorhersage wird die Erkennung von 
Abweichungen und Fehlern ermöglicht.

https://doi.org/10.34641/
clima.2022.45

InHAST

Leckagenerkennung auf Basis  
von Infrarotbildern

Automatisierte ML-Bildanalyseverfahren werden 
genutzt, um Leckagen auf Infrarotbildern zu  
lokalisieren.

https://doi.org/10.1016/j.
autcon.2024.105709

InRN

Tabelle 6: Ausgewählte Use Cases für die Bewertungsmethode zur Einschätzung von ML Use Cases im Fernwärmenetzbetrieb (Fortsetzung nächste Seite)
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Name des Use Case Beschreibung Quelle Kategorie

Leckagenerkennung auf Basis  
von Drucksensorik

Eine Kombination aus einer hydraulischen  
Simulation und einem auf XGBoost basierenden 
Klassifikator wird genutzt, um Leckagen zu iden-
tifizieren und dem korrekten Abschnitt des Rohr-
netzes zuzuordnen.

https://doi.org/10.1016/j.
enbuild.2020.110161 

InRN

Klassifikation von Rohrzuständen 
auf Basis von Akustik- und  
Vibrationssignalen

Dieser Use Case nutzt direkte Klassifikations
verfahren wie beispielsweise Support Vector  
Machines für die Zuordnung von akustischen 
Messwerten zu festgelegten Rohrzuständen.

https://doi.org/10.1016/j.
measurement.2023.113388 

InRN

Optimierung des Netzbetriebs 
mithilfe ML-basierter  
Netzsimulation

Durch die Verwendung eines Reinforcement-
Learning-Ansatzes in Kombination mit Hinter-
grundwissen über die Netztopologie wird ein  
effizientes und dynamisches Simulationsmodell 
erstellt, das anschließend verwendet wird, um 
den Fernwärmenetzbetrieb hinsichtlich der  
Kosten der Wärmeproduktion und der Wärme
effizienz zu optimieren.

https://doi.org/10.1109/
TCST.2024.3355476 

BeWN

Spitzenlastreduktion Dieser Use Case nutzt einen Reinforcement- 
Learning-Ansatz, der auf Basis eines Netzmodells, 
einer thermodynamischen Modellierung der  
Gebäude im Fernwärmenetz und eines agenten-
basierten Nutzerkomfortmodells eine optimale 
Strategie für die Reduktion von Spitzenlasten  
ermittelt.

https://doi.org/10.1016/j.
engappai.2021.104235 

BeWN

Flexibilitätsnutzung von  
Gebäuden durch die Steuerung 
der Wärmezufuhr

In diesem Use Case wird ein Reinforcement-
Learning-Algorithmus verwendet, um thermostat
gesteuerte Wärmespeichermöglichkeiten wie  
Gebäudehüllen im Fernwärmenetz zu flexibili
sieren. Ziel ist die Nutzung dieser Flexibilitäten  
für Spitzenlastreduktionen und/oder Energie-
Arbitrage.

https://doi.org/10.1016/j.
enbuild.2017.08.052

BeWN

ML-Ersatzmodell für thermo-
hydraulische Simulationen

Dieser Use Case verwendet ein Graph Neural  
Network, um bestehende aufwendige thermo-
hydraulische Simulationsmodelle durch ein 
schnelleres, effizienteres ML-Modell zu ersetzen 
sowie Durchflussraten und Temperaturen an  
verschiedenen Stellen im Netz zu simulieren.

https://hal.science/hal-
04462676v1

BeWN

ML-unterstützte Reglerparameter
optimierung

Der in ML4FW erprobte Use Case Abschlussbericht / Open-
Source-Veröffentlichung

BeHAST

ML-basierte Optimierung von 
Fernwärme-Sekundärkreisen

Dieser Use Case befasst sich mit der Erstellung 
eines ML-Modells für die optimierte Steuerung  
des Wärmeflusses vom Primärkreislauf in den  
Sekundärkreislauf durch die automatisierte  
Steuerung von Ventilen. Das Ventilsteuerungs
modell wird dabei auf Basis historischer Ventil
einstellungsdaten im Kontext mit den Wetterdaten 
erstellt und mit einem ML-Vorhersagemodell für 
die Vorlauftemperatur im Sekundärkreis bei  
verschiedenen Ventileinstellungen kombiniert.

https://doi.org/10.1016/j.
energy.2021.122061

BeHAST

Fortsetzung Tabelle 6: Ausgewählte Use Cases für die Bewertungsmethode zur Einschätzung von ML Use Cases im Fernwärmenetzbetrieb
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Arbeitspreis Emissionspreis MwSt. Bruttopreis

11,27 Cent/kWh 1,55 Cent/kWh 19 % 15,26 Cent/kWh

Tabelle 7: Fernwärme-Preisgestaltung der Neubrandenburger Stadtwerke GmbH, Stand 2025
Quelle: https://www.neu-sw.de/downloads/privatkuenden/produkte/fernwaerme/preisbestimmungen_fernwaerme.pdf

Art der Information Name Datenpunkt in  
SAM DISTRICT ENERGY Beschreibung Datenpunkt 

Temperatur-Messwerte Primär Vorlauftemperatur vor beiden PWT RüF3 Temperatur Vorlauf primär 

Heizung Sekundär Vorlauftemperatur  
hinter der Pumpe VF1

Temperatur Vorlauf Heizung sekundär Istwert 

 Heizung Sekundär Rücklauftemperatur VF4 Temperatur Rücklauf Heizung sekundär 

 WWB Warmwassertemperatur VF2 Temperatur sekundär Vorlauf Warmwasser 

 Primär RL, hinterm PWÜ-WWB  
(Rücklauftemperatur RüF2)

Temperatur primär Rücklauf Warmwasser 

 Außentemperatur AF1 Außentemperatur 

 Aktuelle Sollwerte Vorlaufsollwert HK1 Temperatur Vorlauf Heizung  
sekundär Sollwert 

Raumsoll Aktuell HK1 Raumsoll aktuell Heizkreis 1 

 Zustand Pumpe UP1 Zustand Pumpe Heizung (Ein/Aus) 

Speicherladepumpe SLP Zustand Speicherladepumpe (Ein/Aus) 

 Ventil-Stellsignale Stellsignal HK1 Position Ventil Heizung (%) 

Stellsignal HK2 Position Ventil Warmwasser (%) 

 Betriebsmodi Betriebsart HK1 Betriebsart Heizkreis 1 (Tag/Nacht/Standby) 

Reglerparameter Heizkennlinie Steigung Heizkennlinie Steigung 

Heizkennlinie Niveau Heizkennlinie Niveau 

 Raumsoll Tag HK1 Raumsoll Tag Heizkreis 1 

 Raumsoll Nacht HK1 Raumsoll Nacht Heizkreis 1 

 Statuswerte Fehlerstatusregister Fehlerstatus

Wärmemengenzähler-Daten WMZ Arbeit Arbeit akkumuliert in MWh 

WMZ Leistung Aktueller Leistungsmesswert in kW 

 WMZ Durchfluss Aktueller Durchflussmesswert in l/h 

 WMZ Volumen Akkumuliertes Volumen in m3 

 WMZ Vorlauftemperatur Am WMZ gemessene Vorlauftemperatur in °C 

 WMZ Rücklauftemperatur Am WMZ gemessene Rücklauftemperatur in °C 

Tabelle 8: Im Vorhaben benötigte Datenpunkte
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