

Data4Grid – Challenge #2

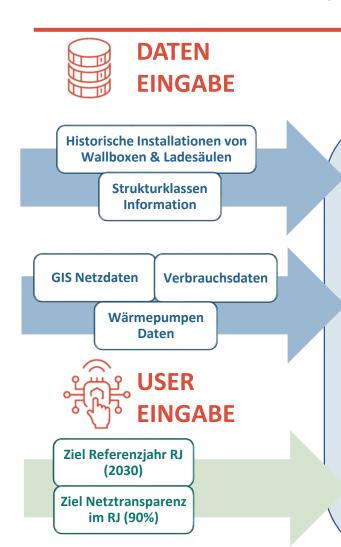
Konzept zur optimierten Sensor-Positionierung in Niederspannungsnetzen

Dr. Aleksander Drenik

Dr. Raphael Ferretti

Dr. Rene Fassbender

Dr. Alexander Fritz


Dr. Andreas Schulze

Irina Kroh

OSGAr – das Data4Grid Gesamtlösungskonzept

Das OLT Smart Grid Application Optimizer Framework auf einen Blick

SIMULATIONS-BACKEND

VISUALISIERUNGS-FRONTEND

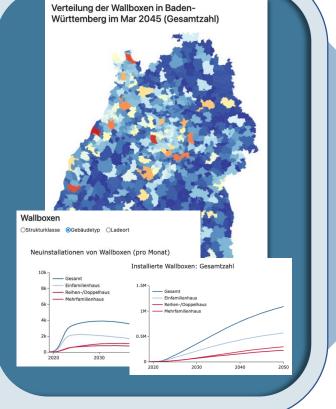
ERGEBNIS AUSGABE

Vorhersage-Modelle

zur Entwicklung und Verteilung der E-Mobilität bis 2050

Kritische Leitungssegmente

mit vorhergesagter Überlastun im Referenzjahr


Investment-Optimierte
Sensor Positionen

zur Erreichung der Ziel-Netztransparenz

#1
E-Mobility
Forecasting Simulator

#2
Lastgang Szenario
Simulator

#3
Smart Grid
Sensor Optimierer

Ziele und Definitionen

Frei wählbare Parameter

Definitionen:

Netztransparenz (NT):

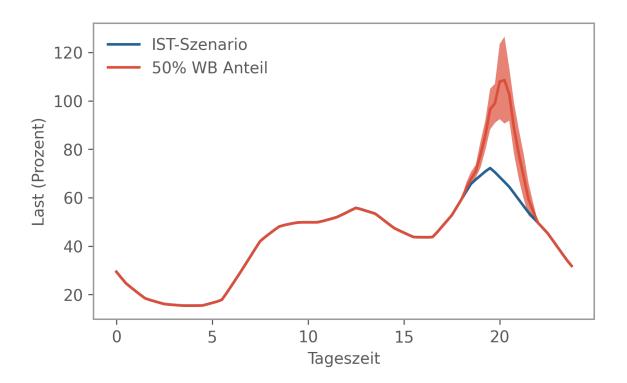
Anteil aller Überlastungsereignisse die durch Sensormessungen erkannt werden können

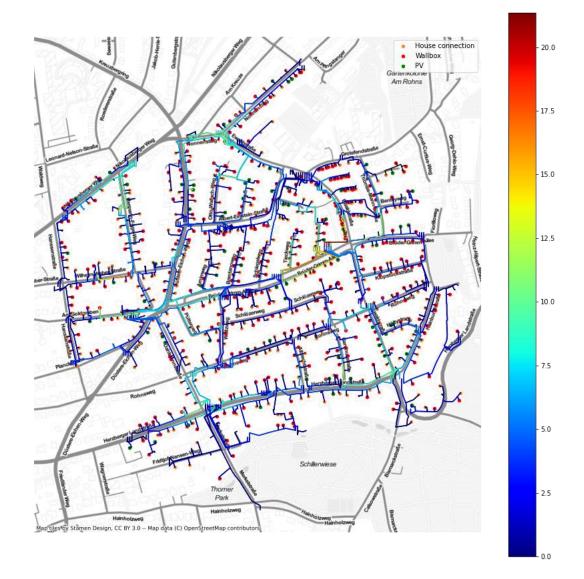
Falsch-Positiv-Rate (FPR):

Anteil falsch klassifizierter identifizierter Überlastungsereignisse

Wählbare Zielwerte:

Beispiel: Netztransparenz >90% bei einer Falsch-Positiv-Rate <40%


Beispiel Referenz Szenario:

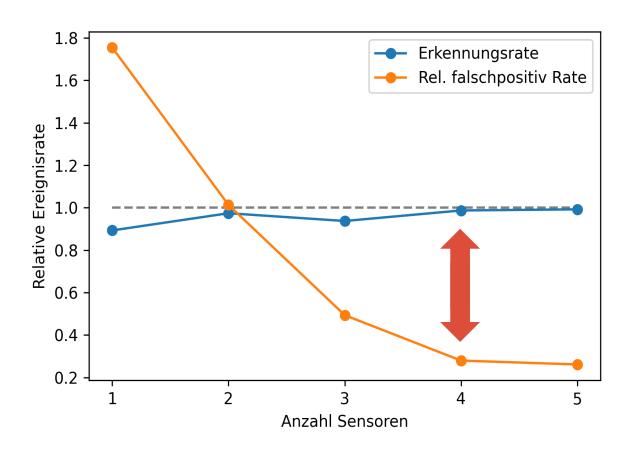

50% der Haushalte haben 11kW Ladesäule in 2030 (basierend auf Challenge #1 Ergebnis)

Lastgang Szenarien-Simulation

Standardlastgänge und Ladevorgänge

Zunahme der maximalen Netzlast durch Ladesäuleninfrastruktur in 2030

Unsere OSGAr Analyse-Schritte


Zur investment-optimierten Sensor-Positionierung

- > Identifizierung überlasteter Leitungen
- **➤ Verfolgung relevanter Netzabschnitte**
- > Optimierung der Sensorpositionen

Smart-Grid Sensor-Optimierung

Maximale Transparenz für minimales Investment

Anzahl Sensoren	Überlastungs- ereignisse	Transparenz*	Rel. falsch- positiv Rate*
1	383	0,89	1,76
2	383	0,97	1,01
3	383	0,94	0,49
4	383	0,99	0,28
5	383	0,99	0,26

OSGAr: Unser End-to-End Gesamtlösungskonzept

Investment-optimierte Smart-Grid Sensor-Positionierung in Niederspannungsnetzen

Quantitative Zielwerte: aus der gewünschten Netztransparenz ergibt sich eine eindeutige minimale Anzahl an notwendigenSensoren

Input: unsere realistische Vorhersage-Modelle der zukünftigen Ladesäulen-Infrastruktur

Ergebnisse:

- Identifikation überlastungsgefährdeter Leitungen
- Investment-optimierte Positionen für Smart-Grid Sensorik

OSGAr ermöglicht die Smart-Grid Optimierung des Gesamtnetzes und ist leicht auf andere Niederspannungsnetze skalierbar!

Sprechen Sie uns an!

OmegaLambdaTec GmbH

Lichtenbergstraße 8 85748 Garching www.omegalambdatec.com

DR. RAPHAEL FERRETTI
Data Scientist

DR. ADRIAN BITTNER
Data Scientist

IRINA KROH
Project Assistance

MANUELA PEHLEMarketing Managerin