I. Übersicht

Verbundprojekt CoGeQ	2
Projekt NiQ	3
Projekt PhotonQ	4
Projekt QCStack	5
Projekt Q-Grid	6
EQUAHUMO	7
MUNIQC-Atoms	8
MUNIQC-SC	9
PhoQuant	10
QSolid	11
SPINNING	12
TAQO-PAM	13
QMNDQCNet	14
BAIQO	15
DE-BRILL	16
ATIQ	17
SNAQC	18
CiRQus	19
Rymax	20
Qzell	21
Q-Exa	22
GeBaseQ	23
SIQCI	24
E2TPA	25
DemoOuanDT	26

II. Steckbriefe

Verbundprojekt CoGeQ

Titel	Projektziele	
CoGeQ - Wettbewerbsfähiger	 Verwirklichung eines mobilen, 	
Deutscher Quantenrechner	gatterbasierten Quantenprozessors in	
Тур	einem Diamant-Kristall, der aus NV-	
Pilot	 Farbzentren besteht Schaffung einer auf Festkörper-Spins basierende Architektur, deren Prozessor 	
Projektlaufzeit	weniger Ansprüche an die umgebende	
01.05.2022 - 30.04.2025	Infrastruktur (z.B. Kühlung) stellt und auch bei Raumtemperatur betrieben werden kann	
Konsortialführer	Ort	
Prof. Dr. Jan Meijer Universität Leipzig	Leipzig	
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
Bundesministerium für Bildung und Forschung (BMBF)		
Projektvolumen:		
4,8 Mio. Euro (zu 88,3% durch das BMBF gefördert)		

Projekt NiQ

Titel	Projektziele	
NiQ - Rauschen in Quantenalgorithmen	Konzeptentwicklung, in dem	
Тур	Quantenalgorithmen als	
Pilot	selbstorganisierender Prozess aus einem Zusammenspiel von Rauschen	
Projektlaufzeit	und kohärenter Quantendynamik	
01.02.2022 - 31.01.2025	verstanden wird	
Konsortialführer	Ort	
Prof. Dr. Giovanna Morigi Universität des Saarlandes	Saarbrücken	
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
2,1 Mio. Euro (zu 92,5 % durch das BMBF gefördert		

Projekt PhotonQ

Titel	Projektziele	
PhotonQ - Messbasierte	Entwicklung eines Prozessors für einen	
photonische Quantenprozessoren	messbasierten, photonischen	
Тур	Quantencomputer	
D	Demonstrierung eines Gesamtsystems,	
Demonstrator	das Quanteninformation mit acht	
Projektlaufzeit	Qubits verarbeitet sowie die	
	grundsätzliche Eignung des	
01.01.2022 - 31.12.2025	Funktionsprinzips für	
77 (* 1601	Quantencomputing nachweist	
Konsortialführer	Ort	
Prof. Dr. Stefanie Barz		
Universität Stuttgart, Institut für	Stuttgart	
Funktionelle Materie und	Statigart	
Quantentechnologien		
För	rderprogramm	
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
16,6 Mio. € (zu 97,7 % durch das BMBF gefördert)		

Projekt QCStack

Titel	Projektziele	
QCStack - Zentraler Softwarestack für Quantencomputer	Entwicklung einer	
Тур	technologieübergreifenden Middleware,	
Pilot	die standardisierte Funktionen für die Entwicklung und Kompilierung,	
Projektlaufzeit	Inbetriebnahme und Betrieb	
01.02.2022 - 31.01.2025	gatterbasierter QC zur Verfügung stellt	
Konsortialführer	Ort	
Dr. Valeria Bartsch		
Fraunhofer-Institut für Techno- und	Kaiserslautern	
Wirtschaftsmathematik (ITWM)		
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
3,6 Mio. Euro (zu 69,5 % durch das BMBF gefördert)		

Projekt Q-Grid

Titel	Projektziele	
Q-Grid - Nutzung der Leistung von	Untersuchung der grundsätzlichen Anwendbarkeit des	
Quantencomputern für die		
Optimierung zukünftiger	Quantencomputings auf verschiedene	
Energienetze	Fragestellungen im Energiesektor	
Тур	Identifizierung von Herausforderungen	
Pilot	des Quantencomputing in der NISQ-Ära	
T Hot	bezogen auf die praktische Umsetzung	
Projektlaufzeit	Entwicklung von quantengestützten	
	Algorithmen, einer automatischen	
01.01.2022 - 31.12.2024	Vorverarbeitungsschnittstelle sowie	
	eines Benchmark-Systems	
Konsortialführer	Ort	
Dr. Juan Bernabe-Moreno	Hannover	
E.ON Digital Technology GmbH	Haimovei	
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
2,9 Mio. Euro (zu 59,7 % durch das BMBF gefördert)		

EQUAHUMO

Titel	Projektziele	
Efficient Quantum Algorithms for		
the Hubbard Model – Effiziente		
Quantenalgorithmen für das		
Hubbard-Modell	Entwicklung von effizienten	
Тур	Quantenalgorithmen für Hubbard-	
Pilot	Modelle oberhalb des absoluten Nullpunkts	
Projektlaufzeit		
01.01.2022 - 31.12.2024		
Konsortialführer	Ort	
Prof. Ignacio Cirac		
Max-Planck-Institut für	Garching b. München	
Quantenoptik		
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
3,9 Mio. Euro (zu 80,1 % durch das BMBF gefördert)		

MUNIQC-Atoms

Titel	Projektziele	
Munich Quantum Valley		
Quantencomputer Demonstratoren		
– Neutralatom-basierter		
Quantencomputer-Demonstrator	Realisierung eines Quantenprozessors	
Тур	mit bis zu 400 Qubits, der auf	
Demonstrator	Neutralatomen basiert Demonstration der Grundfunktionalität dieses Overtenpresserse.	
Projektlaufzeit	dieses Quantenprozessors	
01.01.2022 - 31.12.2026		
Konsortialführer	Ort	
Prof. Dr. Immanuel Bloch		
Max-Planck-Institut für	Garching b. München	
Quantenoptik		
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
35,8 Mio. Euro (zu 88,8 % durch das BMBF gefördert)		

MUNIQC-SC

Titel	Projektziele	
MUNIQC-SC	Entwicklung eines	
Munich Quantum Valley	Quantencomputerdemonstrators auf	
Quantencomputer Demonstratoren	der Basis supraleitender Schaltkreise	
– Supraleitende Qubits	mit einem Quantenprozessor, der eine	
Тур	Rechenleistung von bis zu 100 Qubits	
	aufweist	
Demonstrator	Erforschung der	
Projektlaufzeit	Mikrowellenschaltkreise zur Kontrolle	
	der Qubits sowie der	
01.01.2022 - 31.12.2026	Integrationsmethoden für supraleitende	
	Schaltkreise	
Konsortialführer	Ort	
Prof. Dr. Stefan Filipp		
Bayerische Akademie der		
Wissenschaften	Garching	
Walther-Meissner-Institut für		
Tieftemperaturforschung		
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
44,2 Mio. Euro (zu 86,0 % durch das BMBF gefördert)		

PhoQuant

Titel	Projektziele	
PhoQuant Photonische Quantencomputer	Entwicklung einer neuen photonischen Rechnerarchitektur, die eine schnelle	
Тур	Weiterentwicklung weit über die 100	
Pilot	Qubits ermöglichtEntwicklung optimierter Algorithmen	
Projektlaufzeit	für spezielle Problemstellungen sowie Algorithmen für das universelle	
01.01.2022 - 31.12.2026	Quantencomputing • Bereitstellung von Anbindungsmöglichkeiten für die Öffentlichkeit per Cloud	
Konsortialführer	Ort	
Dr. Michael Förtsch Q.ant GmbH	Stuttgart	
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
49,3 Mio. Euro (zu 84,8 % durch das BMBF gefördert)		

QSolid

Titel	Projektziele	
QSolid - Quantum computer in the	Entwicklung eines Quantencomputer-	
solid state – Quantencomputer im	Demonstrators mit	
Festkörper	Prozessorgenerationen, welche	
Тур	Leistungsprofile wie Größe, Präzision	
Demonstrator	 sowie Anwendungsbezug aufweisen Schaffung eines eng abgestimmten 	
Projektlaufzeit	Soft- und Firmware-Stacks für die	
01.01.2022 - 31.12.2026	Systemintegration • Etablierung einer Lieferkette unterstützender Technologien zur Vorbereitung weiterer Skalierungsschritte	
Konsortialführer	Ort	
Prof. Dr. Frank Wilhelm-Mauch Forschungszentrum Jülich GmbH	Jülich	
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
76,3 Mio. Euro (zu 89,8 % durch das BMBF gefördert)		

SPINNING

Titel	Projektziele	
SPINNING - Diamond spin-photon-based quantum computer — Spin-Photon-basierter Quantencomputer auf Diamantbasis Typ Demonstrator Projektlaufzeit 01.01.2022 - 31.12.2024	 Entwicklung eines Demonstrators für einen Quantencomputer "Made in Germany" Entwicklung der notwendigen Peripherie, um den Quantencomputer an herkömmliche Computersysteme anzubinden 	
Konsortialführer	Ort	
Prof. Dr. Rüdiger Quay Fraunhofer-Institut für Angewandte Festkörperphysik (IAF)	Freiburg	
, , ,	rderprogramm	
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
18,1 Mio. Euro (zu 89,8 % durch das BMBF gefördert)		

TAQO-PAM

Titel	Projektziele	
TAQO-PAM - Maßgeschneiderte Quantenoptimierung zur Planung und Steuerung industrieller Fertigung Typ Pilot Projektlaufzeit 01.01.2022 - 31.12.2024	 Entwicklung der hybriden, quantenklassischen Algorithmen für die demnächst verfügbaren Quantencomputer Entwicklung der Technologie, die auch für Anwender ohne tiefe quantenmechanische und quanteninformatische Kenntnisse geeignet ist 	
Konsortialführer	Ort	
Prof. Dr. Wolfgang Mauerer Ostbayerische Technische Hochschule Regensburg – Fakultät Informatik und Mathematik	Regensburg	
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
8,2 Mio. Euro (zu 74,9 % durch das BMBF gefördert)		

QMNDQCNet

Titel	Projektziele	
QMNDQCNet - SiC-basierte Quantenspeicherknotenpunkte für ein verteiltes Quantencomputernetzwerk Typ Demonstrator Projektlaufzeit 01.01.2022 - 31.12.2026	Erforschung sowie die Demonstrierung eines Netzwerks aus Quantenspeicher- Knotenpunkten durch ein optisch aktives Quantensystem und kontrollierbare Kernspins in einem Festkörper	
Konsortialführer	Ort	
Prof. Dr. Roland Nagy Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Elektrotechnik, Elektronik und Informationstechnik	Erlangen	
Fö	rderprogramm	
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
2,7 Mio. Euro (zu 100 % durch das BMBF gefördert)		

BAIQO

Titel	Projektziele		
BAIQO - Bayesian Netzwerk Analyse und Inferenz via Quantum- unterstützter Optimierung – am Anwendungsbeispiel Modellierung klinischer Studien Typ Pilot Projektlaufzeit	 Untersuchung der Möglichkeiten zur Optimierung klinischer Studien Erforschung der unterschiedlichen Arten von Quantenalgorithmen sowie die Prüfung von Einsatzmöglichkeiten Klarstellung, ob ein "Quanten Vorteil" im Vergleich zu klassischen Ansätzen zur Optimierung klinischer Studien 		
01.12.2021 - 30.11.2024	besteht		
Konsortialführer	Ort		
Dr. Thomas Ehmer MERCK KGaA	Darmstadt		
Fö	Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt			
Förderer			
BMBF			
Projektvolumen:			
1,5 Mio. Euro (zu 73,3 % durch das BMBF gefördert)			

DE-BRILL

Titel	Projektziele	
DE-BRILL - Deutsche Brilliance: Herstellungsprozess und neuartige Steuerungstechniken für Diamant- Quantencomputer Typ Demonstrator Projektlaufzeit 01.12.2021 - 30.11.2024	 Demonstrierung der atomar genauen Technik zur Herstellung von Quantenmikroprozessoren Entwicklung des Auslesens und der Manipulation von Qubits in Quanten- computern mit vielen Prozessorknoten 	
Konsortialführer	Ort	
Dr. Mark Mattingley-Scot Quantum Brilliance GmbH	Stuttgart	
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
19,9 Mio. Euro (zu 78,4 % durch das BMBF gefördert)		

ATIQ

Titel	Projektziele	
ATIQ - Implementierung von Quantenalgorithmen aus Finanzwesen und Chemie auf einem Quantendemonstrator Typ Demonstrator	Entwicklung zuverlässiger Quantencomputer-Demonstratoren auf der Basis von gefangenen Ionen für komplementäre Anwendungsfälle	
Projektlaufzeit 01.12.2021 - 30.11.2026	 Demonstrierung des Quantenvorteils, der einen praktischen Nutzen hat 	
Konsortialführer	Ort	
Prof. Dr. Christian Ospelkaus Leibniz Universität Hannover, Institut für Quantenoptik	Hannover	
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
44,5 Mio. Euro (zu 84,1 % durch das BMBF gefördert)		

SNAQC

Titel	Projektziele	
SNAQC - Scalable Neutral-Atom Quantum Computing Typ	 Erforschung eines Neutralatom- Quantenrechners, der der auf einzelnen, in optischen Pinzetten gefangenen 	
Pilot Projektlaufzeit	Atomen, die an einen optischen Resonator gekoppelt sind, basiert	
01.12.2021 - 30.11.2026	 Realisierung eines ersten fehlerkorrigierten logischen Qubits 	
Konsortialführer	Ort	
Dr. Johannes Zeiher Max-Planck-Institut für Quantenoptik	Garching b. München	
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
3,3 Mio. Euro (zu 100 % durch das BMBF gefördert)		

CiRQus

Titel	Projektziele	
CiRQus - Quantensimulation mit zirkularen Rydbergatomen		
Тур	Verbesserung der Kohärenzzeit der	
Pilot	Rydberg-Plattform um mehrere Größenordnungen durch ein neuartiges	
Projektlaufzeit	Qubit	
01.12.2021 - 30.11.2026		
Konsortialführer	Ort	
Dr. Florian Meinert Universität Stuttgart	Stuttgart	
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
2,6 Mio. Euro (zu 100 % durch das BMBF gefördert)		

Rymax

Titel	Projektziele	
Rymax - Rymax-One Quantum Optimizer Typ Pilot Projektlaufzeit 01.12.2021 - 30.11.2026	 Aufbau eines vollständig kohärenten Quanten-Annealers auf der physikalischen Grundlage von 500 neutralen, in einem optischen Gitter gefangenen Ytterbium-Atomen Fertigstellung eines entsprechenden Demonstrators bis Projektende 	
Konsortialführer	Ort	
Prof. Dr. Klaus Sengstock Universität Hamburg, Zentrum für optische Quantentechnologien	Hamburg	
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
29,0 Mio. Euro (zu 87,1 % durch das BMBF gefördert)		

Qzell

Titel	Projektziele	
Qzell - Hochtransparente optische Komponenten für Quantenanwendungen Typ Pilot Projektlaufzeit 01.12.2021 - 30.11.2024	 Erforschung von Antireflexschichten Entwicklung der Designkonzepte für das Objektiv, absorptionsarme Materialien zur Realisierung der elektromagnetischen Abschirmung und UHV-taugliche Oberflächen- und Fügeverfahren 	
Konsortialführer	Ort	
Dr. Ulrike Schulz Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF	Jena	
För	rderprogramm	
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
3,3 Mio. Euro (zu 76,6 % durch das BMBF gefördert)		

Q-Exa

Titel	Projektziele	
Q-Exa - Quantencomputer- Erweiterung durch Exa-Scale-HPC	Tufanahan atasha alaniashan	
Тур	Erforschung technologischer Besonderheiten eines	
Pilot	Quantencomputers in Kombination mit der HPC- Beschleunigung für die Nutzer	
Projektlaufzeit	eines Forschungsrechenzentrums	
15.11.2021 - 14.11.2024		
Konsortialführer	Ort	
Dr. Peter Eder IQM Germany GmbH	München	
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
45,3 Mio. Euro (zu 88,4 % durch das BMBF gefördert)		

GeBaseQ

Titel	Projektziele	
GeBaseQ - Germanium based qubits	Entwicklung neuartiger, halbleitender	
Тур	Materialplattform auf Grundlage von	
Pilot	Silizium-Germanium-Quantentöpfen für Quantentechnologien	
Projektlaufzeit	Untersuchung der spinbasierten Qubits	
01.08.2022 - 31.07.2027	und supraleitenden Qubits	
Konsortialführer	Ort	
Dr. Vincent Mourik Forschungszentrum Jülich GmbH	Jülich	
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
4,8 Mio. Euro (zu 100 % durch das BMBF gefördert)		

SIQCI

Titel	Projektziele	
SIQCI - Scalable Architecture for	Herstellung eines Prototyps einer	
Ion-Trap Quantum Computing	Ionenfalle, dessen neuartiges Design	
Integration	größere Skalierbarkeit gestattet	
Тур	Entwicklung eines neuen open-source	
Dilet	Compilers als Middleware, der	
Pilot	Prozessoren mit mehreren	
Projektlaufzeit	Prozessorzonen verwalten kann	
.,	 Erarbeitung der Kompiliermethoden, 	
01.07.0000 00.00.000	die darauf abzielen, fehleranfällige	
01.07.2022 - 30.06.2025	Sequenzen von Zwei-Qubit Gates durch	
	Multi-Qubit Gates zu ersetzen	
Konsortialführer	Ort	
Dr. Henrik Dreyer		
Cambridge Quantum Deutschland	München	
GmbH		
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
697 Tausend Euro (zu 50 % durch das BMBF gefördert)		
bezogen auf die deutschen Partner		

E2TPA

Titel	Projektziele	
E2TPA - Exploiting Entangled Two-	Entwicklung einer umfassenden	
Photon Absorption	Quantenbeschreibung der Licht-	
Тур	Materie-Wechselwirkung für Entangled	
Pilot	 Two-Photon Absorption Herstellung periodisch gepolten Lithium-Niobat-Quellen mit speziell 	
Projektlaufzeit	adaptierten Pump-Lasern für eine	
01.07.2022 - 30.06.2025	effiziente Breitband- Photonenpaar- Erzeugung • Evaluierung des Gesamtsystems im Labor sowie in einem anwendungsnahen System	
Konsortialführer	Ort	
Prof. Dr. Christine Silberhorn Universität Paderborn, Institut für photonische Quantensysteme (PhoQS)	Paderborn	
Förderprogramm		
Quantentechnologien – von den Grundlagen zum Markt		
Förderer		
BMBF		
Projektvolumen:		
433 Tausend Euro (zu 77,7 % durch das BMBF gefördert)		
bezogen auf die deutschen Partner		

DemoQuanDT

Titel	Projektziele	
DemoQuanDT -Quanten-		
schlüsselaustausch im deutschen		
Telekommunikationsnetz für		
höhere IT-Sicherheit	Erforschung, Entwicklung und	
Тур	Demonstration eines sicheren und	
Demonstrator	netzübergreifenden Quantenschlüsselaustausch- Netzwerkmanagements	
Projektlaufzeit	Netzwerkinanagements	
01.2022 - 12.2024		
Konsortialführer	Ort	
Deutsche Telekom Technik GmbH	Bonn	
Förderprogramm		
Innovationshub für Quantenkommunikation		
Förderer		
BMBF		
Projektvolumen:		
15,20 Mio. € (davon 56% Förderanteil durch BMBF)		